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In order to understand the conformational behaviour of Intrinsically Disordered Proteins (IDPs),

it is essential to develop a molecular representation of the partially folded state. Due to the very

large number of degrees of conformational freedom available to such a disordered system, this

problem is highly underdetermined. Characterisation therefore requires extensive experimental

data, and novel analytical tools are required to exploit the specific conformational sensitivity of

different experimental parameters. In this review we concentrate on the use of nuclear magnetic

resonance (NMR) spectroscopy for the study of conformational behaviour of IDPs at atomic

resolution. Each experimental NMR parameter is sensitive to different aspects of the structural

and dynamic behaviour of the disordered state and requires specific consideration of the relevant

averaging properties of the physical interaction. In this review we present recent advances in the

description of disordered proteins and the selection of representative ensembles on the basis of

experimental data using statistical coil sampling from flexible-meccano and ensemble selection

using ASTEROIDS. Using these tools we aim to develop a unified molecular representation of

the disordered state, combining complementary data sets to extract a meaningful description of

the conformational behaviour of the protein.

Introduction

One of the most remarkable discoveries of protein science over

the last decade concerns the revelation that a large fraction of

functional proteins encoded by the human genome is either

fully disordered or contains long disordered regions.1–4

Intrinsically disordered proteins (IDPs) remained beyond the

scope of classical structural biology, and therefore escaped the

attention of the multiplication of structural genomics projects

that have emerged in the hope of classifying all protein folds.

IDPs are biologically functional despite a lack of stable, well-

defined three-dimensional structural fold, and as such they

impose a different perspective on the relationship between

primary protein sequence and function. IDPs are also strongly

involved in numerous human pathologies, and the develop-

ment of pharmacological solutions to these problems awaits a

molecular description of the role of flexibility in the develop-

ment of disease.5–7 Proteins present a vast spectrum of

flexibility in their physiological states, from stable enzymes

to highly flexible chains. In analogy to folded proteins, the

primary sequence predetermines the functional behaviour of

the protein, but in this case, rather than focussing on a unique

fold that stabilizes the protein, and considering the role of

local structure and dynamics relative to this scaffold, we are

forced to consider the more central role that conformational

flexibility plays in the function of the intrinsically disordered

state. The determination of a single structure has no real

physical relevance, at least in the free form of such proteins,

and there is therefore a pressing need for the development of

an entirely new set of experimental and descriptive approaches

to describe the conformational behaviour of IDPs.8–11

One obvious aim of a structural description of IDPs is

to determine rules that define the behaviour of the flexible

protein in terms of probability to populate a defined region of

conformational space. This is often achieved by evoking an

explicit ensemble description of interconverting structures,

whose populations are interpreted in terms of a population-

weighted distribution that represents the true conformational

equilibrium. However the definition of this distribution is no

easy task. IDPs populate a vast conformational space, and

the mapping of this potential energy landscape represents

a classical ill-posed problem, in which the number and com-

plexity of the available degrees of conformational freedom

far outweigh the accessible experimental data that can be
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measured for a particular system. Some caution therefore

needs to be exercised when treating such under-determined

systems, where the development of an ensemble description

that is in agreement with the experimental data may not ensure

that the associated conformational sampling is correct. The

development of robust procedures that address this issue is of

paramount importance.

NMR of intrinsically disordered proteins

Characterisation of the diverse conformational properties

of the unfolded protein cannot be based solely on a single

experimental technique, but necessarily relies on the exploita-

tion of complementary approaches reporting on both short

range and long-range structural parameters. It is also essential

to consider the time scales that characterise local and global

motions and the inter-conversion rates of different members of

a conformational ensemble. Nuclear magnetic resonance

(NMR) spectroscopy is particularly rich in both short range

and long-range structural information that can be exploited to

accurately define the behaviour of IDPs.12 Despite a compara-

tively restricted amide proton chemical shift dispersion,

NMR signals retain the spectroscopic characteristics of

small molecules, because of the flexibility of the chain, so that

heteronuclear chemical shift assignment remains possible,

even for very large intrinsically disordered proteins.13 Mole-

cular weight restrictions that apply to folded proteins therefore

do not extend in the same way to intrinsically disordered

proteins of the same number of amino acids.

Most importantly NMR provides access to ensemble and

time averaged conformationally dependent parameters at

atomic resolution. The measurement of structurally dependent

parameters inherently provides a basic tool to study local

conformational propensities that may be important for fold-

ing upon binding,14 and transient or persistent long-range

contacts or tertiary structure that may also play a role in

molecular interactions.14–16 In this article we describe

advances of some NMR-based techniques that have taken

place in recent years for the description of the conformational

behaviour of IDPs.17–19

The chemical shift of a specific nucleus reports on the local

physico-chemical environment of the nucleus, and in the pre-

sence of conformational flexibility, depends on a population-

weighted average over local conformations sampled by all

molecules in the ensemble that are exchanging on timescales

faster than the millisecond. This timescale therefore dictates

our interpretation of all NMR parameters that are measured

from this chemical shift averaging process. The chemical

shift can also provide information about the local structural

propensity20 that can be detected in intrinsically disordered

proteins by analyzing the deviation of measured parameters

from the expected value that would be measured in the absence

of any local structure (the so-called ‘random coil’ value).21,22

The absolute definition of a random coil remains open to

argument, in most cases amino-acid specific values are measured

experimentally from small peptides with no apparent local

structure.23–25 The chemical shift provides a sensitive probe

of local structural sampling, in particular 13C shifts, whose

values depend, in order of importance, on the covalent structure

(13Ca, 13Cb or 13C0), the type of amino acid, and finally on the

local structural propensity which is the parameter of interest.

The difference between the measured shift and the amino-acid

specific random coil shift, known as the ‘secondary’ chemical

shift, is commonly used to identify the presence of transient

structure in flexible chains.26–28 Scalar couplings between

nuclei on the backbone of the protein also depend on backbone

dihedral angles and average in a similar way to chemical

shifts.29–31 Again random coil values have been measured in

small peptides and these values can be compared to experimental

values to determine the level of transient local structure.

Residual dipolar couplings (RDCs), measured between

pairs of nuclei, are also extremely promising tools for studying

the conformational behaviour of disordered proteins.32–36

RDCs become measurable when the protein of interest is

dissolved in a dilute liquid crystalline medium, such that the

average dipolar coupling, normally averaged to zero in free

solution, has a residual, non-zero value.37–39 Under these

conditions RDCs depend on the average over the ensemble

of orientations of the vector connecting the two spins in the

following way:

Dij ¼ �
gigj�hm0
8p2r3

3 cos2 O� 1

2

� �
ð1Þ

where O is the orientation of the internuclear vector with

respect to the static magnetic field and r is the vibrationally

averaged distance. The angular parentheses again describe an

average over conformations that exchange with rates faster

than the millisecond timescale. RDCs are highly sensitive

probes of time and ensemble-averaged conformational equili-

bria on timescales up to the millisecond in folded proteins,40–44

but can also be used to characterize the conformational

behaviour of unfolded proteins. The sensitivity of RDCs to

the local structure in an otherwise unfolded chain can be best

illustrated by considering the orientation of an amide bond

vector. The expected average orientation of the amide vectors

present in an unfolded chain aligned in a direction parallel to

the magnetic field is approximately orthogonal to the field,

resulting in coupling with a negative sign. If a helical element is

present, this will induce a change in sign of the measured

coupling, because the bond vector would be aligned rather

in an average parallel direction with respect to the average

chain direction. The angular averaging term in eqn (1) changes

sign and so does the dipolar coupling (Fig. 1). Over the last

decade significant progress has been made in developing an

understanding of the nature of RDCs in the unfolded state,

and the potential for exploiting this information has generated

considerable interest in the development of new approaches to

exploit this experimental parameter.45–47

Disordered proteins often exhibit evidence of fluctuating

long-range tertiary structure, that may be important for

physiological interactions, for example via so-called fly-casting

interactions,16 in the control of early folding events, or to

provide protection from aggregation or proteolysis. While it

is difficult to detect such transient contacts via standard

approaches to the measurement of internuclear distances,

using 1H–1H cross relaxation, the detection of such long-

range information is possible by exploiting the strength of
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the dipolar relaxation between the nuclear spin and an

unpaired electron that can be introduced into the protein by

attaching a nitroxide group to a cysteine mutant.48–50 Because

the gyromagnetic ratio of the electron spin is over 600 times

higher than the proton spin, the observed line broadening

due to the paramagnetic relaxation enhancement provides

long-range probes of intra- and intermolecular distances and

distance distribution functions that can be detected even if

only weakly populated.51–57

A number of additional NMR parameters can be used to

characterize the unfolded state: the most common are pulse-

field gradient spin echo experiments,58 that report on the

population weighted average translational diffusion properties

of the chain and heteronuclear spin relaxation, that report on

local order on picosecond to nanosecond timescales.59–61 The

complementary information available from small angle X-ray

scattering that reports on the average mass distribution in

three dimensional space, and therefore the dimensions of the

ensemble of structures, is also often exploited in combination

with NMR data to provide a more complete picture of the

disordered state.62–68

Ensemble descriptions of IDPs from NMR data

Despite remarkable progress in recent years, the transfor-

mation of these highly diverse experimental parameters into

a meaningful conformational description remains a key

challenge for contemporary structural biologists. The most

common approach that has been applied over recent years

borrows tools developed for the determination of the structure

of proteins in solution, where additional terms are incorpo-

rated into a physical potential energy function to bias the

conformational sampling. A restrained molecular dynamics

(MD) simulation, run in parallel over different members of the

ensemble, is then used to drive the ensemble into a region of

conformational space that is in agreement with experimental

data.69–74 Despite the popularity of such techniques, a number

of key questions remain open with respect to their generalisation.

It is not clear how the introduction of non-physical parameters

into the force field will affect the ability of the molecular dynamics

engine to efficiently search conformational phase space, or its

ability to sample a Boltzmann-weighted distribution of con-

formers. It is also unclear how to optimize the number of

structures present in the ensemble average, a feature that will

depend strongly on the density and information content of the

experimental parameters. A more general problem, that is shared

by all approaches to the interpretation of experimental data from

disordered states, concerns the characteristic averaging timescales

of each experimental parameter that must be properly accounted

for within the conformational ensemble.

An entirely different approach does not use the experimental

data to drive the individual members of the ensemble into a

conformation in agreement with the experimental data, but

instead samples conformational space as broadly as possible,

and then exploits the experimental data to define the region of

conformational space that is appropriate for the system under

investigation. Enhanced molecular dynamics approaches such

as accelerated molecular dynamics have been used in this way

to study intrinsic dynamics in folded proteins,44,75,76 although

the potential extent of conformational space available to IDPs

complicates the successful application of such approaches to

these highly flexible systems. An alternative strategy is to

attempt to flood conformational space by creating a statistical

coil model of the protein based on the intrinsic conformational

behaviour of each amino acid, derived for example from

backbone dihedral angle distributions found in loop regions

of protein structures.77–79

An explicit ensemble description of IDPs, called flexible-

meccano, builds multiple copies of the protein that are

ensemble designed to represent all possible states that are

relevant for the NMR observable.35 Flexible-meccano randomly

samples amino-acid-specific backbone dihedral angle {f/c}
propensities derived from non-secondary structural elements

of high-resolution X-ray crystallographic structures,80 and

thereby assembles a conformational ensemble from which

experimental values can be calculated. Amino-acid specific

hard-sphere steric clashes are used to provide a physically

reasonable model of repulsive interatomic forces, and no

attractive forces are explicitly used. The simplicity of the

model allows for highly efficient structure ensemble assembly

(100 000 structures of a 100 amino acid protein can be created

in 30 minutes on a single processor). The ensembles are

randomly sampled from population-weighted distributions that

are taken to represent the potential energy surface of each amino

acid. Although this does not guarantee a Boltzmann distribu-

tion, the absence of additional constraints in this sampling phase

avoids distortions due to additional potential energy terms such

as those used in restrained MD calculations.

The presence of a single set of signals detected in NMR

spectra of denatured and intrinsically disordered proteins

imposes the implicit assumption that all conformers used to

predict an experimental value are in rapid exchange on time-

scales faster than the millisecond. The ensemble of structures

can then be used to predict experimental values that would be

measured if the statistical coil model were relevant. For the

prediction of chemical shifts and scalar couplings, local structural

information is sufficient to predict the expected value, while

for RDCs the calculation of the expected alignment of each

conformer is necessary before averaging over the ensemble.

Fig. 1 Illustration of the sensitivity of RDCs to the presence of local

structure. The orientational dependence shown in eqn (1) results in

positive 1DNH RDCs for the central helical element, where the NH

bond vectors tend to be aligned with the field, while in the disordered

regions the RDCs are negative, because the average orientation is

perpendicular to the direction of the chain.
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In the most common case of steric alignment this calculation is

performed on the basis of the three dimensional shape of the

protein.81

RDCs simulated using this very simple approach predict

values in reasonable agreement with experimental couplings

measured in both intrinsically disordered and chemically

denatured proteins. Initial studies already indicated that the

orientational space sampled by inter-nuclear bond-vectors

from RDCs is sensitive enough to pick up differences in

amino-acid specific backbone dihedral angle distributions,

even in the absence of secondary structural propensity.10,35

Flexible-meccano has also been used in combination with

molecular dynamics based simulations, to quantify the level

of b-turn propensity in the K18 domain of the protein Tau82

and a-helical propensity in the transactivation domain of the

protein p53.83

While N–HN RDCs alone have been shown to provide

evidence for local structural propensity, the measurement of

multiple RDCs from each peptide unit provides the necessary

information to make quantitative estimates of the detail and

population of the structural elements. Thus, the combination

of RDCs from different bond-vectors (N–HN, Ha–Ca, C0–HN,

Ca–C0) was also shown to be crucial to the description of the

length and population of different helical structures that form

the rapidly exchanging conformational equilibrium of the

molecular recognition element of the disordered C-terminal

domain of the nucleoproteins from Sendai and measles

viruses.84,85 In this case entire ensembles of all possible helical

elements were calculated, and the minimum combination that

could reproduce the experimental data was determined, along

with their associated populations. Remarkably, in both cases,

the helical elements present in the molecular recognition

elements that were significantly populated in solution were

found to follow amino acids with known propensity to

stabilize helices in free solution.85 An extensive set of RDCs,

including a large number of long-range 1H–1H couplings, were

measured in the protein Ubiquitin in its denatured state,87

and used in combination with flexible-meccano to identify

modifications of the statistical coil model that are appropriate

to account for conformational sampling of the unfolded chain

in the presence of the denaturant.88,89

The statistical coil description of the disordered state thus

provides a relatively straightforward approach for calculating

RDC profiles that would be expected if the protein behaved

as a random coil. The establishment of such approaches is

essential in order to develop a clear understanding of the

origin of experimentally observed fluctuations in the absence

and in the presence of specific or persistent local or long-range

structure. However the next step, requiring the quantitative

interpretation of departures from expected random coil

values in terms of specific local or long-range conformational

behaviour, is of equal importance and fundamentally more

challenging.10,90,91

Determination of meaningful ensembles in

agreement with experimental data

A number of studies have applied a rational, hypothesis-based

approach, calculating explicit ensembles containing tens of

thousands of conformers from different conformational sam-

pling regimes and comparing the ensemble-averaged couplings

to experimental data. In some case this is achieved with the

aid of molecular dynamics simulation to create alternative

conformational sampling that provides agreement with

experimental data.82,83 While these studies are informative

and important to advance our understanding of the field, in

order to generalize the methodology it is necessary to take the

analysis one step further, and develop approaches that can

accurately define the conformational sampling of the peptide

chain directly from the experimental NMR data.

In order to address this issue, the ensemble selection

algorithm, ASTEROIDS (A Selection Tool for Ensemble

Representation Of Intrinsically Disordered States) has been

developed to determine appropriate regions of conformational

space populated by the IDP by selection of conformers from

the flexible-meccano ensemble using experimental NMR

data.92–94 The ASTEROIDS algorithm is based on an efficient

genetic algorithm that is used to propose conformational

ensemble descriptions selected from a large pool of possible

conformers that are in agreement with the experimental data.

In order to identify conditions under which an approach that

evokes a sub-ensemble of structures can be accurately applied

to describe a pseudo-continuum of conformers, we system-

atically adopt the following simple procedure that clearly

quantifies the conformational accuracy of such approaches:

(1) Data are simulated under specific conditions of confor-

mational sampling and appropriately averaged over an

ensemble of a very large number of conformers (between 50 and

100 thousands). (2) Sub-ensembles of tractable size are generated

using ASTEROIDS to be in agreement with these data, and

the conformational sampling represented in these ensembles is

compared to the target sampling used in step (1) to generate

the data.

One of the most important problems encountered in the

treatment of RDCs derives from the large number of struc-

tures required before a simple arithmetic average reaches

convergence. The reason for this is that, in addition to the

obvious dependence on local conformational sampling, the

RDCs for each individual conformer depend on conforma-

tional degrees of freedom throughout the molecule, that each

define the shape of the protein, and therefore the size and

distribution of the RDCs. Indeed, convergence of RDCs from

a 76 amino acid chain is not yet achieved in 10 000 structures.

More rapid convergence of RDCs can be achieved using a

smaller number of conformers if the protein were divided into

short, uncoupled segments (Local Alignment Windows—

LAWs) and the RDCs are calculated using the alignment

tensor of these segments.95 This is an important result: the

ability to describe the conformational properties using fewer

structures renders ensemble selection more tractable.

However there are important aspects that need to be

addressed before such approaches can be used to explain

experimental data. Adopting the procedures described above,

RDCs were calculated using specific conformational sampling

regimes averaged over a large ensemble.92 The average RDCs

were then used, in combination with a 15 amino acid window,

to select different sized ensembles of conformers from a large

pool in agreement with the data. The results demonstrated that
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Fig. 2 The effects of long-range contacts on expected RDC profiles. Top: (a) 1DNH and 1DCaHa RDCs calculated for a 100 amino acid sequence in the

absence of specific contacts. The program PALESwas used to calculate RDCs from each conformer. 100000 conformers were used in this and each average

shown in figures (b–n). (b–g) The same calculation is performed, but conformers are only retained in the ensemble if at least one inter-Cb distance exists

between the primary sequence ranges shown below the red lines: (b) i=1–20, j=41–60, (c) i=1–20, j=61–80, (d) i=1–20, j=81–100, (e) i=21–40,

j=61–80, (f) i=21–40, j=81–100, (g) i=41–60, j=81–100. Bottom: (h) 1DNH and 1DCaHa RDCs calculated for a 100 amino acid poly-valine sequence

in the absence of specific contacts. (i–n) The same calculation is performed, but conformers are only retained in the ensemble if at least one inter-Cb distance

exists between the primary sequence ranges shown below the red lines: (i) i = 1–20, j = 41–60, (j) i = 1–20, j = 61–80, (k) i = 1–20, j = 81–100,

(l) i = 21–40, j = 61–80, (m) i = 21–40, j = 81–100, (n) i = 41–60, j = 81–100. The dark red curves show the analytical reproduction of the long-range

effects on the RDCs with the contact positioned in the centre of each region. Reprinted with permission from the Journal of the American Chemical Society.93
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Fig. 3 Combination of effects of long-range order derived from PREs with local conformational sampling using local alignment windows for the

interpretation of RDCs. (a) Blue: Data averaged over the target ensemble where each conformer has a contact between 11–20 and 61–70. Red: Average

PREs over an ensemble of 80 structures selected using ASTEROIDS. The four boxes show the PRE data for simulated spin labels at residues

20 (top left), 40 (top right), 60 (bottom left) and 80 (bottom right). Lines show the PREs calculated from a control ensemble with no specific contacts.

The distance matrix shows the chain proximity in the ensembles selected using ASTEROIDS (above the diagonal), compared to target ensembles

(below the diagonal). Average distances between sites are shown in terms of: Dij = log(hd0iji/hdiji) where dij is the distance in any given structure of the

ASTEROIDS ensemble between sites i and j, and d0ij is the distance in any given structure of the reference ensemble between sites i and j. Values above

the diagonal have been multiplied by 2 for ease of identification of the contact. Top: Black: RDCs calculated using the local alignment window (LAW).

Blue: Predicted effect of the long-range contact detected using the ASTEROIDS interpretation of the PREs. Bottom: Combination (purple) of the

two curves shown in the top panel and RDCs averaged over 100000 full length conformers where each structure has a contact between 41–50 and

81–90 (black). (b) Blue: Data averaged over the target ensemble where each conformer has a contact between 41–50 and 81–90. Red: Average PREs

over an ensemble of 80 structures selected using ASTEROIDS. The four boxes show the PRE data for simulated spin labels at residues 20 (top left),

40 (top right), 60 (bottom left) and 80 (bottom right). Lines show the PREs calculated from a control ensemble with no specific contacts. The distance

matrix shows the chain proximity in the ensembles selected using ASTEROIDS (above the diagonal), compared to target ensembles (below the

diagonal). Values above the diagonal have been multiplied by 2 for ease of identification of the contact. Top: Black: RDCs calculated using the local

alignment window (LAW). Blue: Predicted effect of the long-range contact detected using the ASTEROIDS interpretation of the PREs. Bottom:

Combination (purple) of the two curves shown in the top panel and RDCs averaged over 100 000 full length conformers where each structure has a

contact between 11–20 and 61–70 (black). Reprinted with permission from the Journal of the American Chemical Society.93
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ensembles that evoked only 20 structures reproduced the experi-

mental data, but critically did not reproduce the backbone

dihedral angle distributions that were at the origin of the average.

Only when at least 200 structures were used in the average was

the conformational behaviour sufficiently well reproduced. The

reason for this is the instability of adding additional RDCs to an

ensemble where the average is not yet converged.

The revelation that experimental data can be reproduced by

an ensemble of structures that does not represent the correct

conformational sampling was initially surprising to us,

although this appears to be a predictable manifestation of

the potential pit-falls of deriving ensembles under such under-

determined conditions. The result has particular importance,

and highlights the risks of reducing the number of members

of a conformational average until the data are reproduced.

Such a procedure can clearly produce ensembles whose local

conformational sampling is quantitatively incorrect, while

reproducing experimental data.

Secondly, and possibly more critically, approaches that only

use a LAW to analyze RDCs patently ignore the fact that

RDCs are affected both by the local conformational sampling

and long-range order. This is important even in the absence of

specific long-range contacts, because the chain-like nature

of the unfolded protein induces an effective baseline reflecting

the increasing degrees of freedom available towards the ends

of the chain (Fig. 2a and h). Long-range information is

necessarily absent from an approach that only employs

LAWs to predict the RDCs. If this approach is employed

the simulated data need to be corrected for the effects of the

unfolded chain. This can be achieved when LAW-predicted

RDCs are multiplied by the expected baseline of an unfolded

chain, whose bell-shaped dependence can be parameterised by

fitting to numerical simulation.

The effects of ignoring long-range contacts when analyzing

RDCs from disordered chains can however be much more

severe when preferential long-range contacts exist in the protein,

as demonstrated by the following simulations: RDCs were

predicted from 100000 strong ensembles using the flexible-

meccano simulations of a 100 amino acid model sequence in

the presence of weakly defined long-range contacts, defined as a

contact between any of two 20 amino acid strands (Fig. 2).

In comparison to the expected values for a chain with no specific

long-range contacts, the effect is significant, even for such diffuse

long-range contacts. Simulation predicts significant quenching

Fig. 4 Combined analysis of PREs and RDCs in the context of

experimental data from a-synuclein. (a) Comparison of experimental
1DNHRDCs with couplings calculated using a standard flexible-meccano

prediction (red). The rmsd between the two distributions is 0.78 Hz.

(b) Contact map showing the relative proximity of different parts of the

chain in a-synuclein, derived from experimental PRE data. Average

distances between sites are shown in terms of: Dij = log(hdijihd0iji) where
dij is the distance in any given structure of the ASTEROIDS ensemble

between sites i and j, and d0ij is the distance in any given structure of the

reference ensemble between sites i and j. (c) LAW-predicted RDCs (red)

and effective baseline derived from the distance matrix shown in (b).

(d) Combination of the curves shown in (c) (red) in comparison to the

experimental 1DNH RDCs (rmsd= 0.52 Hz). Reprinted with permission

from the Journal of the American Chemical Society.93

Fig. 5 Flowchart showing the iterative construction of a conforma-

tional ensemble using ASTEROIDS on the basis of heteronuclear

chemical shifts.
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of RDC values in regions between the two contact regions.

Importantly, although the local conformational sampling is not

measurably affected by the contacts, the resulting RDCs are very

different because of the transient long-range order that is also

present. This again demonstrates that extreme caution needs to

be exercised when interpreting RDCs uniquely in terms of the

local structure. Comparison with identical simulations for a

poly-valine indicates that the actual effect of diffuse long-range

contacts is to convolute a more complex ‘baseline’ on the

local structure of the expected RDCs. Fortunately a generic

mathematical expression that accurately models the form of

this baseline can be derived that reproduces the numerically

predicted baselines shown in Fig. 2, which depends only on

the position of the contacts and the length of the chain.

Fig. 6 Application of ASTEROIDS to ensemble representation on the basis of chemical shifts. Secondary chemical shifts from an ensemble of

200 structures determined using the ASTEROIDS algorithm compared to experimental secondary chemical shifts (blue). Red: secondary chemical

shifts averaged over the final ensemble. (A) a carbon, (B) b carbon, (C) carbonyl, (D) amide nitrogen. (E, F) Reproduction of independent parameters

by the ensemble based on chemical shift selection. (E) 15N–1H residual dipolar couplings (RDCs) measured in sterically aligned NTAIL compared to

averages over 50 000 conformers calculated using the amino acid specific description of NTAIL determined from the chemical shifts. Simulated data (red)

were scaled uniformly to best match experiment (blue). (F) Reproduction of 15N secondary chemical shifts (blue: experiment, red: simulation),

calculated using an ensemble determined from only 13C shifts. Reprinted with permission from the Journal of the American Chemical Society.97
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The consequences of this are that long-range information, for

example derived from paramagnetic relaxation enhancement

(vide infra), can be combined with the efficient sliding window

approach, to simultaneously account for both aspects within the

same ensemble average (Fig. 3).93

Combining RDCs and PREs in a single conformational

ensemble

Similar analyses were applied to the interpretation of para-

magnetic relaxation enhancements in disordered systems. We

again use flexible-meccano, in combination with ASTEROIDS,

to model intermolecular contacts giving rise to experimental

PRE in disordered proteins. One important result demon-

strates that even in the presence of highly diffuse, ill-defined

target interactions, explicit modelling of spin label mobility

significantly improves reproduction of conformational

sampling, both for experimental and simulated data. We find

that intermolecular contacts can be identified using 4 strate-

gically placed spin labels in a 100 amino acid protein (Fig. 3)

(and that two contacts can be identified using 8 spin labels in a

200 amino acid protein). Of course the ability to detect the

transient contacts, and more importantly to estimate their

population, strongly depends on the number of cysteine

mutants that are available for the study.71 Using cross

validation of an entire data set that is not used in the analysis,

we are also able to determine the appropriate number of

structures necessary to define the system.

The ability to combine long-range information from PREs

and RDCs in this way represents a major step forward in our

ability to describe highly disordered systems. As an example,

we applied these methods to experimental PRE and RDC data

from a-Synuclein.57,96 Experimentally measured RDCs agree

significantly better when a long-range contact between the

N and C terminal domains, derived from PREs, is included in

the RDC analysis (rmsd of 0.51 compared to 0.75). This not

only validates the predicted effects on RDC profiles due to

long-range transient contacts in disordered systems, but also

demonstrates that PREs and RDCs can be meaningfully

combined to understand experimental data (Fig. 4).

Defining conformational ensembles of IDPs from chemical shifts

Finally we have applied the flexible-meccano/ASTEROIDS

combination to explore the possibility of using chemical shifts

alone to map local backbone conformational sampling of

intrinsically disordered and partially folded proteins (Fig. 5).97

13Ca, 13Cb, 13C0 and 15N chemical shifts have different backbone

f/c dihedral angle dependences that are complementary in

terms of the mapping of different regions of the Ramachandran

space. 13Ca and 13Cb secondary shifts report essentially on the

Ramachandran space sampled by the observed amino acid,

while both 13C0 and 15N are also sensitive to the sampling

properties of the neighbouring amino acids. ASTEROIDS is

used to select a 200-strong sub-ensemble out of a larger pool

(typically 10 000 structures) constructed by flexible-meccano

that is in agreement with the experimental 13Ca, 13Cb, 13C0

and 15N chemical shifts (Fig. 6). The program SPARTA98

is used to calculate chemical shifts for each member of the

ensemble. No assumptions are made about the secondary

structural propensity, with the first ensemble containing only

unfolded structures derived from the statistical coil database.

The local conformational bias is identified automatically on

the basis of chemical shifts, and the resulting propensities are

then used to assemble the new database for the next iteration.

The algorithm thus automatically resolves the backbone

dihedral angle distributions for the construction of entire

secondary structural elements, as well as identifying local

conformational sampling in unfolded domains. The analysis

was applied to the study of NTAIL, the C-terminal domain of

the Sendai virus nucleoprotein, which contains a conformation-

ally fluctuating helical element at its centre. Excellent agreement

with experimental shifts is observed throughout the protein.

Here again we are able to cross-validate the conformational

description against independent data sets (1DNH dipolar couplings

or 15N chemical shifts) to demonstrate both the accuracy of

the description and the predictive power of the approach

(Fig. 6). Although the conformational information is not as

rich as that provided by RDCs, this approach raises the

exciting prospect of probing the conformational behaviour

of disordered proteins under more demanding conditions

where additional parameters cannot be easily measured, for

example when studying IDPs in situ.86

Conclusions

In order to understand the conformational behaviour of IDPs, a

molecular representation of the partially folded state is required.

We have developed ensemble approaches that characterize

the disordered state, initially comparing free statistical coil

simulations with measured data in order to understand expected

random coil values of the different experimental parameters.

Deviations from expected values allowed us to identify the

presence of secondary structural propensity in a number of IDPs.

We have then developed an ensemble description approach,

initially for the study of helical elements in viral proteins from

Sendai and Measles, then applied more generally for any dis-

ordered system. This problem is highly underdetermined, and

each experimental NMR parameter requires specific considera-

tion of the relevant averaging properties of the physical inter-

action responsible for the experimental observable, before valid

parameter ranges and procedures can be established. The result-

ing approach, ASTEROIDS, can now be used to combine

different sources of experimental NMR data, for example

RDCs, PREs and chemical shifts, to define the conformational

behaviour of the protein, and hopefully to follow the changes

in conformational equilibrium that accompany physiologically

relevant interactions.
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