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Over the last decade the accepted paradigm underpinning

classical structural biology has been reassessed, with the

general realization that a significant fraction of proteins

encoded in eukaryotic genomes do not adopt a stable fold in

their functional form, but instead are intrinsically disordered

either in long contiguous regions, or in many cases throughout

their entire length.[1–4] The high degree of flexibility inherent

to intrinsically disordered proteins (IDPs) bestows distinct

properties allowing them to function differently to folded

proteins, but this same attribute complicates characterization

of their molecular behavior. To better understand the

relationship between primary sequence and biological func-

tion in IDPs it is essential that calibrated techniques become

available allowing a quantitative determination of their

conformational behavior.

Nuclear magnetic resonance (NMR) spectroscopy is one

of the most powerful methods for studying disordered

proteins, providing atomic resolution, ensemble-averaged

information reporting on the conformational energy land-

scape sampled by each amino acid.[5–9] Among a large variety

of NMR methods, residual dipolar couplings (RDCs), report-

ing on the orientational properties of the internuclear dipole–

dipole interaction averaged up to the millisecond time scale,

have proven to offer highly sensitive probes of local and long-

range conformational sampling.[10–14] To model the vast

conformational ensemble that gives rise to the measured

NMR signal, statistical coil models have been successfully

used to construct protein ensembles by stochastically sam-

pling amino-acid-specific backbone dihedral angle {f,y}

energy surfaces.[15–19] This ensemble representation is used

to calculate conformationally averaged RDCs, resulting in

remarkable reproduction of their distribution along the

primary sequences of IDPs. Deviations from coil behavior

can then be interpreted in terms of intrinsic propensity to

populate the local structure, often in interaction sites of these

proteins, or to adopt transient long-range structure.[20–22]

Recently RDCs, alone and in combination with chemical

shifts, have been used to directly map the conformational

energy surface using ensemble approaches.[23–28]

In all of these applications, RDCs are calculated from

each member of the ensemble using a steric exclusion model

[Eq. (1)].
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r are the axial and rhombic components of the

alignment tensor of conformer n. Vn and Fn are the polar

coordinates of the internuclear vector {i,j} with respect to the

alignment tensor frame, and Kij (Supporting Information)

depends on the nuclei and the internuclear distance. The

average is then taken over the entire ensemble of N con-

formers.

Despite the success of this approach, averaging of RDCs

over an ensemble of protein conformations presents signifi-

cant practical difficulties that affect both the accuracy and the

portability of the calculation. Most importantly, convergence

of the average requires an unmanageably large number of

structures (100000 for a protein with 100 amino acids and

even larger for longer constructs).[18, 24] These convergence

characteristics depend on the length of the protein, so that

division of the protein into short, uncoupled segments leads to

better convergence.[29] It has indeed been demonstrated that

a segment length of 15 amino acids is a reasonable length for

the so-called local alignment window (LAW) to achieve good

accuracy and efficiency for RDC prediction.[24] Nevertheless

this approach necessarily sacrifices any long-range informa-

tion that may be present, so that predicted RDCs from the

separate segments need to be corrected with a parametrized

baseline to account for any tertiary contacts present in the

ensemble.[25]

In this report we demonstrate that RDCs for a given

residue are essentially determined by the identity of the

amino acid in question and its two neighbors, and sequence-

dependent corrections defining local alignment and the

polymeric nature of the protein. Combining these effects,

we propose a simplified, automatic, and highly accurate

method for directly predicting RDCs from the primary

sequence of unfolded proteins.

To assess the influence of neighboring residues on the

RDCs of the central amino acid we used the flexible-

meccano[18,19] algorithm to simulate RDCs from pentadeca-

peptides with different levels of primary sequence identity,

and compared these to RDCs predicted from the full-length

protein (in this case 76 amino acids in length). The following

cases were simulated: A) the content of the pentadecapeptide

is identical to the native sequence (from i�7 to i+ 7); B) only

the middle residue (i) is the same as the native sequence and

the other 14 residues are represented by a common amino
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acid, in this case valine; C) the middle and adjacent residues

(from i�1 to i+ 1) are defined by the native sequence while

the remaining 12 amino acids are represented by valines

(8000 combinations); D) the middle five (i�2 to i+ 2) are

defined by the native sequence while the remaining 10 are

represented by valines. In each case 10000-strong ensembles

were created, and RDCs of the central residues were

predicted based on steric exclusion. RDCs from the full-

length unfolded sequence were predicted from 50000 con-

formers (Figure 1).

In case (A), with the correct sequence, the RDCs

reproduce the results from the global tensor calculation

very closely, as reported previously for a pentadecapeptide

(Figure 1A).[24] In contrast, with only the central residue

retaining its identity, the predicted RDCs bear poor similarity

to the results from the global tensor (Figure 1B). Importantly

however, including the identity of the nearest neighbors,

already reproduces RDCs predicted from the global tensor

very well. In this example of denatured ubiquitin,[30] the most

significant discrepancy occurs around residues 35–37 (Fig-

ure 1C). This is due to the presence of successive prolines,

where the conformational sampling is locally more restricted

than for other amino acids. The comparison improves even

further when a quintet of amino acids is considered (Fig-

ure 1D). These simulations indicate that for the general case

of an unfolded chain, with a local flexibility described by the

overwhelming majority of available combinations, RDCs can

be accurately predicted by considering only the identity of

neighbors. The effect of the second nearest residues is

apparently weak, unless local structure is present.

We note that if only the sequence information of either

preceding or following neighbors is considered, the predicted

values are poorly reproduced (see Figure S1), and that

simulations carried out in the absence of side-chain inter-

action show that explicit steric clashes with neighbors do not

contribute to these observations (Figure S2), probably

because statistical coil Ramachan-

dran sampling already encodes

aspects of side-chain bulkiness.

Zweckstetter and co-workers

demonstrated that plotting

a smoothed distribution of amino

acid bulkiness along the sequence

also resembles experimental

RDCs.[31]

It appears that the main effect

of nearest neighbors on the mea-

sured RDC originates from amore

subtle phenomenon as highlighted

in Figure 2. An ensemble consist-

ing of 106 conformers of an alanine

pentadecapeptide was created

using the flexible-meccano algo-

rithm. RDCs were predicted for

each conformer, and the averaged

RDCs of each amino acid were

plotted against the {f,y} sampling

of the central amino acid in a 28�

28 grid over all Ramachandran

space. On the right-hand side of

the figure the entire sequence

samples Ramachandran space uni-

formly. Perhaps not unexpectedly,

the HN RDC depends almost

uniquely on the y value of the

preceding amino acid, and the f of

the amino acid of interest (these

angles precede and follow the NH

bond). Similar observations can be

made for other RDCs in the peptide plane, while the CaHa

RDC exhibits a weaker dependence. On the left-hand side of

the figure the sampling of the central amino acid is still

uniform, but the remainder of the sequence samples the

conformational potential intrinsic to an alanine amino acid.

Constraining the flanking residues to this more physical

model significantly modulates the predicted RDCs, showing

that the dependence on the {f,y} sampling of the amino acid

of interest extends further along the chain. Again, removal of

explicit steric interactions does not change this result

significantly. The angular sampling available to the peptide

of interest clearly depends on the backbone dihedral distri-

bution of the neighbors. These complex dependences, on the

sampling of the residue of interest and the neighbor residues,

help to rationalize the observation that no individual RDC

can provide a “read-out” of Ramachandran sampling, but that

Figure 1. Comparison of RDCs predicted from different levels of identity to primary sequence.

Experimental data (DHN and DCaHa) from urea-denatured ubiquitin are shown in black. RDCs predicted

using global alignment tensor are shown in green. Values using LAWs with 15 amino acids are shown

in red. Four levels of identity with respect to the primary sequence were used: A) all amino acids,

B) only the central residue, C) the middle three residues, and D) the middle five residues. RDCs of the

central residue (red) are shown on the left; bold letters emphasize those residues identical to native

sequence, others are shown in gray. In (C) and (D) the red horizontal bars indicate the position of

successive proline residues.
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the inclusion of the conformational sampling of the neighbors

does allow this.

The characterization of nearest-neighbor effects on con-

formationally averaged RDCs points directly to the develop-

ment of a tractable database to predict RDCs from unfolded

proteins. Accordingly we have constructed 8000 different

combinations of pentadecapeptides in which the middle three

residues (numbers 7 to 9) sample all 20 types of amino acid.

The remaining 12 sites were modeled as valines. 10000

flexible-meccano structures were generated for each of the

8000 sequences and different types of RDCs of the central

residue were deposited in a look-up table (Table S3). By using

an efficient internal-coordinate-based algorithm of flexible-

meccano[32] and in-house steric alignment prediction,[33] the

construction of this look-up table takes 26 h on a single CPU

(Intel 2.8 GHz), suggesting that expansion to fourth or fifth

amino acids to define a database of quadruplets or quintets is

quite feasible. As shown in Figure 3A and B, RDCs extracted

from the database according to this tripeptide information are

very similar to the values calculated using the 15 amino acid

LAW approach.

Since the conformational sampling for each amino acid is

different, we find that there is a slight dependence of the

amplitude of the local alignment tensor on the composition of

the 12 flanking amino acids comprising the LAW. Thus a poly-

glycine will be more flexible and therefore exhibit lower

average alignment tensor eigenvalues than a polyproline. To

account for this variation, 8000 simulations were repeated

with N- and C-flanking regions replaced with all 20 types of

hexapeptide and scaling factors derived for different amino

acids (Table S2). The factor S(i) [Eq. (S8)], is composed of the

relative contribution of the 12 flanking amino acids to the

local alignment tensor, and is applied to correct for variation

as a function of sequence. Applying the amino-acid-depen-

dent scaling factor (Figure 3C and D), results in better

reproduction of predicted RDCs (root mean square, rms, falls

by > 60%) from explicit amino-acid sampling compared to

those without correction (Figure 3A and B). Finally the

profile is modified using the baseline B(i) that accounts for

the chainlike nature of the disordered protein, as described

previously[24] (Figure 3E and F).

Combining these approaches, we present a simple algo-

rithm (seq2rdc), to directly predict RDCs from the primary

sequence of IDPs, by extracting the value from the prebuilt

database according to the composition of the tripeptide, and

modulating this due to the local alignment and baseline

factors (S(i) and B(i), respectively). The algorithm, which is

around six orders of magnitude faster than existing

approaches, provides the user with values from the tripeptide

database, S(i) and B(i) (Figures S5 and S6), as well as the final

predicted RDCs. Figure 4 compares different types of RDCs

predicted from seq2rdc with global alignment tensor predic-

tion and published experimental RDCs from denatured apo-

myoglobin,[11] denatured D131D construct of staphylococcal

nuclease,[10] denatured GB1,[32,34] denatured ubiquitin, a-

synuclein,[20] and K18 construct of Tau protein.[21] The

prediction accuracy from the two different approaches is

very similar. seq2rdc is available upon request from the

authors.

The seq2rdc approach therefore provides an immediate

probe of protein unfoldedness once RDCs have been

measured, allowing for direct comparison to experimental

data. For example in the case of Tau protein, positive DNH

RDCs in the experimental data deviate from prediction,

indicating nonrandom behavior of regions that have been

shown to populate b-turns.[21] Any distortion of the underlying

baseline, due to long-range contacts or fluctuating tertiary

structure, can be readily combined with the local conforma-

tional sampling read from the triplet analysis, in analogy to

previously developed explicit ensemble approaches.[25]

Figure 2. Propagation of the influence of conformational sampling

along the peptide chain. Five types of RDCs from a million flexible-

meccano structures (pentadeca-alanine) are plotted against the {f,y}

distribution of the central residue averaged over 28�28 grid. Right

panel: all residues sample {f,y} space uniformly. Left panel: the

central residues sample uniform conformational space, the others

sample the {f,y} angles according to the coil library distribution of

alanine. Colors from red to blue correspond to higher to lower RDC

values over a range chosen to best represent the RDCs of the central

residue.

Figure 3. Flowchart of the seq2rdc approach. The sequence of ubiquitin

and DHN (A, C, E) and DCaHa (B, D, F) are simulated as examples.

Black lines represent the simulation from the LAW, and red lines from

seq2rdc. A and B) database only; C and D) corrected with the scaling

factor S(i) depending on the composition of residues i�7 to i�2 and

i+2 to i+7 (G); E and F) corrected with a length-dependent hyper-

bolic baseline B(i) (H).
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In summary, analysis of local and long-range effects,

corresponding to the conformational sampling of the region

of interest and the chain-like nature of the unfolded protein,

respectively, reveals that theoretical RDCs can be determined

by consideration of these factors alone. Using insights gained

from these studies, we find that RDC prediction can in

general be deconvoluted to four components: the sampling of

the amino acid of interest, nearest-neighbor-dependent

effects, sequence-dependent scaling factors to correct the

local alignment tensor, and a length-dependent baseline to

incorporate the polymeric nature of the unfolded protein. We

demonstrate that a database of combinations of triplets of

amino acids, combined with corrections for the presence of

the triplet in a chain of known composition, defines to a very

good approximation expected random coil values of RDCs in

unfolded states. This obviates the need to calculate explicit

and extensive ensembles of atomic resolution structures,

resulting in a significant improvement in the efficiency of

calculating RDCs from unfolded sequences.
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Figure 4. Examples of seq2rdc prediction (red) compared to experimen-

tally measured RDCs (black). A,C,E) Denatured ubiquitin, B,D,F) dena-

tured protein GB1, G) denatured apo-myoglobin, H) denatured D131D

staphylococcal nuclease, I) a-synuclein, and J) K18 construct of Tau.

Values are compared to prediction from global alignment tensor

(green). RDC type is indicated in each panel (HNHa RDC refers to

HN
i-H

a
i�1).
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.NMR spectroscopy …
… is a powerful method for studying disordered proteins, providing atomic resolution

and ensemble-averaged information. In their Communication on page 687 ff., M.

Blackledge et al. show that by analyzing local and long-range effects, residual dipolar

couplings can be determined up to six orders of magnitude faster than by existing

techniques.
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