
Exploring Free-Energy Landscapes of Intrinsically Disordered
Proteins at Atomic Resolution Using NMR Spectroscopy
Malene Ringkjøbing Jensen,†,‡,§ Markus Zweckstetter,∥,⊥,# Jie-rong Huang,†,‡,§

and Martin Blackledge*,†,‡,§

†Universite ́ Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
‡CEA, DSV, IBS, F-38027 Grenoble, France
§CNRS, IBS, F-38027 Grenoble, France
∥Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen,
Germany
⊥German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
#Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center, 37073 Göttingen,
Germany

CONTENTS

1. Introduction 6632
2. NMR Methods for Probing the Conformational

Behavior of IDPs 6634
2.1. NMR and the Ensemble Average 6634
2.2. Chemical Shifts 6634
2.3. Scalar Couplings 6638
2.4. Paramagnetic Relaxation Enhancement 6640
2.5. Nuclear Spin Relaxation 6642
2.6. Residual Dipolar Couplings 6642
2.7. Insight into RDC Averaging Properties from

Numerical Simulation 6644
2.8. Deconvoluting Conformational Factors Con-

tributing to RDCs Measured in IDPs 6644
2.9. Comparison with Data Sets Comprising

Multiple Experimental RDCs and CSs 6644
3. Analytical Approaches To Describing the Free-

Energy Landscape 6645
3.1. Molecular Dynamics-Based Approaches 6645
3.2. Ensemble Selection Approaches To Map-

ping the Potential Energy Surface 6647
3.3. Application of Ensemble Descriptions to

Protein Denaturation in the Presence of
Urea 6649

3.4. Combining Local and Long-Range Effects for
Ensemble Interpretation of RDCs 6650

3.5. Ensemble Interpretation of CSs for the Study
of Local Conformational Propensity 6650

3.6. Calibration of Ensemble Mapping of Poten-
tial Energy Surfaces − How Well Can We Do? 6651

3.7. Application to IDPs Involved in Neuro-
degenerative Disease − Tau and α-Synu-
clein 6652

3.8. Cross-Validation: Testing the Predictive
Capacity of Ensemble Descriptions 6654

4. Conclusions 6654
Author Information 6655

Corresponding Author 6655
Notes 6655
Biographies 6655

Acknowledgments 6656
References 6656

1. INTRODUCTION

The last 15 years have seen a paradigm shift in our
understanding of protein biochemistry, with the realization
that an unexpectedly high fraction of the human genome codes
for functional proteins, or domains of proteins that lack a stable
tertiary fold.1−4 Bioinformatic analyses of diverse proteomes
predict that intrinsically disordered proteins (IDPs) are
prevalent throughout living organisms, with particular abun-
dance in eukaryotic proteomes where they play crucial roles in
many biochemical processes, including signal transfer, regu-
lation, transcription, and replication and in many human
pathologies. Rather than coding for an energetically stable
three-dimensional fold, associated with conformational fluctua-
tions that allow for biological function,5 the primary sequence
of IDPs results in a much flatter free-energy surface, spanning
multiple different conformations.6 This structural flexibility
allows IDPs to exploit functional mechanisms inaccessible to
folded proteins. IDPs have been proposed to participate in
highly specific but promiscuous interaction networks, exhibiting
rapid dissociation rates, dynamic, or “fuzzy” interactions
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involving local folding-upon-binding into partner-specific
bound conformations, or nonspecific and transient fly-casting
complexes.7−13

To better understand the link between primary sequence and
the free-energy surface explored by IDPs, and to determine
how primary sequence encodes the diverse mechanisms that
characterize function in these proteins, it is essential to develop
atomic resolution descriptions of the molecular behavior of
IDPs in their free and bound conformations.14−18 IDPs exhibit
high levels of flexibility, even in crowded environments such as
the cell,19 placing them outside the realm of classical structural

biology. All classical approaches to structural biology, in
particular crystallographic methods, attempt to determine the
three-dimensional structure of a single conformational substate,
an approach which has little relevance for an IDP, where such a
state represents only one out of a continuum of significantly
populated substates. Substantial efforts have therefore been
devoted to the development of molecular descriptions that
account for the conformational heterogeneity inherent to IDPs.
Among the available solution-state techniques, nuclear
magnetic resonance (NMR) spectroscopy is now established
as one of the most powerful experimental tools for the study of

Figure 1. The use of the statistical coil generator f lexible-meccano for predicting observables of IDPs. Flexible-meccano relies on an amino acid specific
coil library derived from loop regions of high-resolution crystal structures (top). PDB files of the protein are constructed by randomly sampling the
coil library according to the primary sequence in conjunction with a simple steric exclusion principle (left). Observables are calculated for each PDB
file, for example, RDCs (right), which can be averaged over a large ensemble to yield expected values for IDPs.
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IDPs, reporting on atomic resolution, ensemble-averaged

conformational descriptors under conditions that are close to

physiological.14,20,21

The development of experimental and analytical techniques

to study IDPs has evolved in parallel over recent years, and here

we present a general overview of recent progress in the

interpretation of solution-state experimental data, in particular

from NMR, to describe the free-energy landscape explored by

IDPs. We illustrate this general progress with examples from

our own and other laboratories active in this field, describing

analysis of first-order interactions such as chemical shifts and

dipolar couplings, as well as relaxation effects reporting on

dynamics and transient contacts. Because of the insufficient

independent experimental measurements as compared to the

number of degrees of conformational freedom, molecular

ensemble descriptions of IDPs are likely to be highly under-

determined. As the development of such ensemble descriptions

is gaining popularity, we therefore pay particular attention to

the calibration and validation of representative ensembles

developed using different approaches, to assess their ability to

accurately delineate the conformational space sampled by IDPs

in their free and bound forms.

2. NMR METHODS FOR PROBING THE
CONFORMATIONAL BEHAVIOR OF IDPs

2.1. NMR and the Ensemble Average

Although amide proton NMR resonances from IDPs exhibit a
comparatively restricted chemical shift dispersion as compared
to globular, folded proteins, the high flexibility of the chain
results in spectroscopic properties that are characteristic of
small molecules, allowing for backbone chemical shift assign-

ment of 1H, 15N, and 13C resonances, even for very large
intrinsically disordered proteins.22 The dynamic properties of
the chain yield spectra that are only limited by the spectral
overlap, rather than the molecular weight restrictions that apply
to folded proteins. This property also allows for the
development and application of multidimensional experiments
for the assignment of highly overlapped IDP spectra. The
limited spectral width in the 1HN dimension has led to the
development of a number of multidimensional experiments
using selective excitation to enhance longitudinal relaxation
rates of the 1HN nuclei via dipole−dipole interactions with
aliphatic protons, thereby allowing rapid pulsing.23−26 Sparse
sampling techniques can also be exploited to allow higher
dimensional spectra to be recorded efficiently.27−30

Each NMR resonance reports on an ensemble average over
all equivalent nuclei present in the sample and on an average
over all conformations that interconvert on rates faster than the
so-called chemical shift time scale (in the millisecond range for
solution-state biomolecular NMR). This vast conformational
range therefore provides well-behaved statistical averaging,
which is particularly appropriate for the investigation of highly
dynamic molecules such as IDPs. The obvious disadvantage is
that no unique solution exists that can give rise to a single
experimental parameter (for example, a chemical shift),
highlighting the importance of a second, equally powerful
aspect of NMR, and that is the number of experimental
parameters that have distinct and complementary conforma-
tional dependences. This richness raises the prospect of
measuring sufficient experimental data to reduce conforma-
tional ambiguity and better define the free-energy landscapes of
IDPs, even at amino acid resolution. NMR is rich in both short-
range and long-range structural information, distinguishing this
technique from other spectroscopies such as circular dichroism
(CD),31−33 Raman optical activity (ROA),34,35 Fourier trans-
form infrared (FTIR)36 or Förster resonance energy transfer
(FRET),37−39 and small-angle X-ray scattering SAXS40,41 that
are sensitive to either local or long-range conformational
properties but not directly to both.
Conformational averaging of NMR observables can be

modeled in terms of structural ensembles under certain
assumptions about the interconversion rates of different
conformers. For first-order interactions, such as chemical shifts
and scalar or dipolar couplings, this effectively means that
interconversion rates must be faster than the chemical shift
time scale, an assumption that in general is well-founded for
IDPs in solution, where significant line-broadening or evidence
for slow exchange (multiple peaks) is relatively rare.
Interactions that involve nuclear or electron spin relaxation
are more complex, because in these cases the measured
relaxation rate is also dependent on the time scales character-
izing the angular correlation function of the relaxation active
interaction (often corresponding to an internuclear vector).
Overall, however, the averaging properties of NMR parameters,
and the established theoretical basis associated with calculation
of this average, make it an extremely powerful tool for
investigating the dynamic behavior of IDPs.

2.2. Chemical Shifts

The chemical shift (CS) of a nucleus depends on its local
physicochemical environment and is exquisitely sensitive to the
presence of secondary structure in both folded and disordered
proteins.42−47 Wishart and co-workers proposed, already more
than 20 years ago, the chemical shift index (or the secondary

Figure 2. Ramachandran plot showing the statistical coil sampling of
threonine (red points and density map from low, blue, to high, red
population). The Ramachandran plot is divided into four regions: αR
(purple), αL (salmon), βS (green), and βP (yellow). The populations
of these regions will be discussed throughout this Review.
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chemical shift) as a fast and reliable way of identifying
secondary structure types in proteins directly from exper-
imental 1H and 13C CSs.48−50 The secondary chemical shift
(SCS) probes the deviation of experimental CSs with respect to
so-called random coil (RC) shifts:

δ δ δ= −SCS EXP RC (1)

The random coil values depend on the amino acid type and
reflect expected CSs for a protein in the absence of secondary
and tertiary structure. The CSs of backbone 13C nuclei are the
most sensitive to the presence of secondary structure, with
13Cα and 13C′ SCSs that are positive in α-helices and negative
in β-sheets, while 13Cβ SCSs follow the inverse dependence. If

quantitative statements are to be made about secondary
structural content, it is important that the δRC values used to
calculate the SCSs match the experimental conditions as closely
as possible. For this reason, different sets of δRC values have
been derived under various conditions. In most cases, short
unfolded, glycine-rich peptides have been used, where CSs are
measured for the central residue when substituted for each of
the 20 amino acid types. Different data sets have been obtained
under nondenaturing,51 mildly denaturing52,53 or denaturing
conditions,54−56 and nearest neighbor effects on the CSs have
been investigated. More recently, a systematic study of the
temperature and pH dependence of random coil values has

Figure 3. Dependence of different types of chemical shifts of an -Ala-Alai−1-Alai-Alai+1-Ala- peptide on the backbone dihedral angles of residue i. An
ensemble comprising 50 000 conformers of the peptide was constructed using f lexible-meccano, and the chemical shifts were predicted using
SPARTA for each conformation. The conformations were clustered into bins with a radius of 1° according to the dihedral angles of residue i, and the
chemical shifts within each bin were subsequently averaged and plotted against ϕ and ψ of residue i. Reprinted in part with permission from ref 82.
Copyright 2012 American Chemical Society.

Figure 4. Analysis of PREs in IDPs by explicitly accounting for the dynamics of the MTSL side chain. (A) Two f lexible-meccano conformers (blue)
are shown with distributions of the side-chain MTSL spin labels (red) for four different spin label positions. Previously proposed MTSL rotameric
libraries were randomly sampled for a total of 600 conformers for each site. Each position was retained and included in the averaging procedure, if no
steric clashes were found with the given backbone conformation. (B) The theoretical framework for predicting PREs for a single IDP conformer
takes into account two correlation times accounting for the local dynamics of the MTSL spin label (τf) and the overall reconfiguration of the
interaction vector (τs). Reprinted in part with permission from ref 112. Copyright 2011 American Chemical Society.
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been carried out providing a useful addition to already existing
data sets.53

Another way of obtaining δRC values is to employ the large
database (for example, the BMRB57) of experimentally assigned
CSs of proteins of known three-dimensional structure.58−61

Characteristic CSs of α-helix and β-sheet can be derived
directly from the database. Random coil values are derived from
CSs measured in loop regions of proteins that are also present
in high-resolution structural databases. Statistical coil ensembles
are generally assembled by randomly sampling amino-acid

Figure 5. RDCs are modulated by the presence of persistent long-range contacts in IDPs. (Top) Flexible-meccano simulations of 1DNH and 1DCαHα
RDCs (black lines) in a model protein of 100 amino acids with arbitrary primary sequence in the absence (A) and the presence (B−G) of different
persistent long-range contacts: 1−20 and 41−60 (B), 1−20 and 61−80 (C), 1−20 and 81−100 (D), 21−40 and 61−80 (E), 21−40 and 81−100
(F), 41−60 and 81−100 (G). (Bottom) Flexible-meccano simulations of 1DNH and 1DCαHα RDCs (black lines) in a poly valine chain of 100 amino
acids in the absence (H) and the presence (I−N) of the same long-range contacts. The red lines correspond to the parametrization of the baseline
via a simple analytical expression that depends on the length of the chain and the positions of the contacting regions. In both panels, RDCs were
averaged over 100 000 conformers, and the red lines on top of each plot indicate the positions of the two contacting regions. Reprinted with
permission from ref 112. Copyright 2011 American Chemical Society.
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specific potential energy basins, on the basis of conformations
extracted from loop regions of high-resolution three-dimen-
sional structures of proteins, so that random coil and statistical
coil descriptions are often equivalent. One of these
descriptions, f lexible-meccano (Figure 1),62,63 follows these
sampling procedures, combined with simple volume exclusion
(amino acid-specific hard-spheres placed on the Cβ), to
construct statistical ensembles of conformers of unfolded or
partially folded proteins, and is used throughout this Review to
illustrate expected features of NMR parameters measured in
IDPs. Statistical coil descriptions have been developed in this
way by a number of different groups, with notably similar
potentials covering accessible Ramachandran space (Figure
2),62,64−71 divided into four regions αR, αL, βS, and βP. The
populations of these regions will be discussed throughout this
Review.
For IDPs that typically adopt conformations close to random

coil, CSs have been used to pick up propensities for forming
secondary structure.72,73 Forman-Kay and co-workers have
proposed the secondary structure propensity (SSP) algorithm
that estimates propensities to form α-helix or β-extended
conformations along the primary sequence of IDPs.74 The

algorithm employs a set of random coil values together with
expected CSs for fully formed α-helices and β-sheets. The
concerted use of CSs of multiple nuclei allows a more accurate
determination of the propensities as well as a simultaneous
estimation of potential reference offsets on the experimental
CSs. A similar approach is the so-called neighbor-corrected
structural propensity calculator (ncSPC) that derives structural
propensities by employing the random coil values and their
corresponding neighbor correction factors derived from a small
IDP chemical shift database in conjunction with singular value
decomposition.75,76

SSP and ncSPC focus solely on deriving propensities to form
α-helix and β-extended conformations; however, growing
evidence from vibrational spectroscopy,77,78 CD,79 and more
recently NMR80−82 suggests that poly proline II (βP)
conformations are highly abundant in IDPs. The algorithm
δ2D proposed by Vendruscolo and co-workers provides
propensities to form αR, βS, and βP conformations from
experimental CSs.83 The algorithm employs previously derived
characteristic CSs of αR, βS, and βP and solves a set of linear
equations for the populations in these regions, together with a
population having a random coil shift.
A potential problem inherent to all approaches that include a

random coil shift as part of a fitting procedure is that the exact
definition of random coil is rather ill-defined. If random coil is
equivalent to statistical coil (vide supra), then βP, αR, and βS
should already have finite populations within this continuous
distribution. Fitted populations should then be added to these
underlying populations, to determine the true population of the
region of Ramachandran space. If however random coil is
defined as having zero population of βP, αR, and βS, then the
hypersurface is not a continuous statistical coil distribution, and
values could not be easily compared to experimental values
derived from peptides or under denaturing conditions where
these regions are expected to have a finite population. This
question is particularly pertinent for 1Hα, 13Cα, and 13Cβ CSs
that are not expected to depend strongly on the presence or
absence of the hydrogen bonds that stabilize cooperative
secondary structure.
The use of secondary CSs as a means to identify secondary

structure, or the resolution of a set of linear equations to
determine populations of a limited number of regions of
Ramachandran space, are both low resolution attempts to
capture the main features of the complex hyper-surfaces relating
observed CSs to backbone dihedral angles. These hyper-
surfaces are convoluted with additional contributions from
neighboring residues, side-chain conformations, hydrogen
bonding, ring-current effects, protonation states, as well as
effects from different ionic strengths and temperatures, which
are inherently difficult to predict theoretically. However, as the
number of proteins of known three-dimensional structure with
associated experimental CSs increases, we are gaining more
insight into the shape and appearance of these CS hyper-
surfaces. This insight has formed the basis for the development
of a number of CS predictors that allow the calculation of CSs
directly from the three-dimensional structure of a protein.
Common to the most successful predictors such as SHIFTX,84

SHIFTX2,85 SPARTA,86 SPARTA+,87 and CamShift88 is that
they employ assigned CSs for proteins of known structure to
parametrize their CS prediction method. All of these methods
rely on a static view of protein structures and do not account
for the potential impact of protein dynamics on the
experimental (and in principle already ensemble-averaged)

Figure 6. Example of the combination of analytically calculated
baselines and RDCs averaged using local alignment windows for a
model protein of 100 amino acids of arbitrary sequence. (A) Baseline
contribution calculated analytically for contacts between regions 41−
60 and 81−100. (B) RDCs calculated using local alignment windows
of 15 amino acids in length. RDCs were averaged over 200 structures.
(C) Combination of the baseline from (A) and the local RDCs from
(B) (red curves) as compared to the RDCs calculated using a global
alignment tensor over 100 000 structures carrying a contact between
regions 41−60 and 81−100 (black curves). Reprinted in part with
permission from ref 112. Copyright 2011 American Chemical Society.
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CSs. A step forward in this direction was recently taken by
Brüschweiler and co-workers who proposed the predictor PPM
that explicitly accounts for protein dynamics on CSs by
parametrizing the predictor against long MD simulations of a
set of proteins with known experimental CSs.89 The
importance of taking into account the effect of dynamics on
CSs has been amply demonstrated as predicted CSs averaged
over long MD simulations significantly better reproduce
experimental CSs as compared to their prediction from a
single static structure.90−92

CS prediction using these parametrized hypersurfaces can in
turn provide insight into the ability of CSs to distinguish
between different conformational propensities. Statistical coil
simulations are shown in Figure 3, where backbone CSs have
been predicted for trialanines over a large ensemble of
conformers using an empirical CS predictor.82,86 It is clear
that 13C CSs of the βP region of Ramachandran space are, to a
large extent, degenerate with random coil shifts that would be
measured by taking a population weighted average over the
entire free-energy surface. On the other hand, 1HN and 15NH

CSs depend more strongly on the presence of βP
conformations; however, they have a stronger dependence on
experimental conditions such as pH, temperature, and ionic
strength, making their prediction more error-prone.

2.3. Scalar Couplings

Information about secondary structural propensities can also be
extracted from scalar coupling constants measured between
nuclei of the protein backbone. Scalar couplings depend on
backbone dihedral angles93−95 and, in the same way as CSs,
represent a population-weighted average over all conformations
sampled in solution up to the millisecond time scale. The
dependence of scalar couplings on the main-chain torsion
angles can be described using a Karplus relationship93 that is
normally parametrized against experimental scalar coupling
constants measured in several proteins of known structure.65,96

For example, the three-bond coupling constant 3JHNHα depends
on the backbone dihedral angle ϕ allowing a clear distinction
between α-helical (3JHNHα < 5 Hz) and β-sheet conformations
(3JHNHα > 8 Hz).96,97 Scalar couplings have also been measured
from short peptides providing estimates of random coil

Figure 7. Dependence of different types of RDCs of an -Ala-Alai−1-Alai-Alai+1-Ala- peptide on the backbone dihedral angles of residue i. An ensemble
comprising 1 000 000 conformers of the peptide was constructed using f lexible-meccano, and the RDCs were predicted for each conformation. The
conformations were clustered into bins with a radius of 1° according to the dihedral angles of residue i, and the RDCs within each bin were
subsequently averaged and plotted against ϕ and ψ of residue i. Reprinted in part with permission from ref 82. Copyright 2012 American Chemical
Society.
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couplings that upon comparison with experimental couplings
allow a direct identification of secondary structures.98 In
common with CSs, parametrization of Karplus curves is often
calculated against known angles measured in folded proteins, so
that some a priori unknown proportion of the ensemble-
averaged property is again incorporated into the fitted
parameters. Karplus parameters calculated using density
functional theory and applied to each snapshot of an MD
trajectory have been shown to reproduce experimental
couplings more accurately in folded proteins,99,100 and such
an approach will likely improve J-coupling analysis in IDPs.
Early comparison of measured 3JHNHα couplings with the

distribution of ϕ angles of amino acids in loop regions of solved
protein structures provided experimental evidence that amino
acids possess specific intrinsic ϕ propensities.65,101 This
observation has consequences for IDPs, where the intrinsic
conformational propensity of each amino acid is expected to
dictate the conformational and dynamic behavior of the protein
and eventually its function. Measurement of backbone scalar
couplings in IDPs has been used to locate regions of transiently
populated secondary structure as well as to report on the
general distribution of dihedral angles in Ramachandran space
at amino acid resolution.65,101−110 They have also been used to
cross-validate ensembles developed on the basis of other
experimental data.110−113 Other scalar couplings reporting on
backbone ψ angle distributions, such as 3JCαCα,

3JNHα,
3JNCβ, and

3JNN,
114−118 although smaller in magnitude than couplings

reporting on ϕ, can be very useful in IDPs to more accurately
probe the populations of βP conformations.116,119

Information about side-chain conformations can also be
obtained through scalar coupling constants. For example, the
3JHαHβ,

3JNCγ, and
3JC′Cγ couplings report on the χ1 torsion

angles and have been used to study side-chain conformations in
both folded and disordered proteins.120−122 The measurement
of these couplings in denatured or intrinsically disordered

proteins is particularly challenging due to the poor dispersion of
side-chain resonances due to motional averaging. Schwalbe and
co-workers studied side-chain conformations in denatured
lysozyme through 3JNCγ,

3JC′Cγ,
3JC′Hβ, and

3JHαHβ couplings
and obtained estimates of the populations of different staggered
χ1 rotamers.

123,124 Grzesiek and co-workers exploited multiple
scalar couplings involving Hβ nuclei (3JNHβ2,3,

3JC′Hβ2,3, and
3JHαHβ2,3) in urea-denatured ubiquitin and protein G to obtain
χ1 angle distributions with unprecedented precision together
with stereospecific assignment of the Hβ protons.125 The results
showed that the derived χ1 rotamer populations are in general
similar to those derived from loop regions of folded protein
structures; however, some variations occur locally indicating
contributions from sequence- and residue-specific interactions.
3JNCγ couplings measured in phosphorylated arginine-serine
repeats were also in good agreement with values calculated
from ensemble descriptions driven by NMR backbone
restraints, indicating a coupling between backbone and side-
chain sampling.110

Analysis of the local conformational distributions of
tripeptides using diverse scalar couplings combined with
vibrational spectroscopy (infrared, Raman, and vibrational
CD) has been used to determine how sampling propensity in
the unfolded state can affect folding of peptides and proteins.
These studies indicate that observed enhanced propensities for
Thr, Ser, Cys, Asn, and Asp to stabilize different turn motifs in
folded proteins reflect the intrinsic sampling of these amino
acids in short peptides.33,119,126,127 Related work compared MD
simulation to measured couplings in alanine peptides of
different lengths,128 and scalar couplings were recently used
to measure the accuracy of state-of-the-art force fields.71,129

Finally, a recent study of the effects of pressure on the
conformational sampling of α-synuclein used 3JHNHα couplings
to invoke a general increase in the population of βP at 2500 bar
as compared to standard pressure conditions.130

Figure 8. Propagation of the influence of conformational sampling along the peptide chain and its effect on predicted RDCs. RDCs predicted from a
f lexible-meccano ensemble of one million conformers of pentadeca-alanine are plotted against the backbone dihedral angles of the central residue
averaged over bins with a radius of 1°. (Right) All residues sample {ϕ,ψ} space uniformly. (Left) The central residue samples conformational space
uniformly, while the others sample {ϕ,ψ} angles according to the statistical coil distribution of alanine. Red to blue colors correspond to higher to
lower RDC values. Reprinted with permission from ref 225. Copyright 2013 Wiley-VCH.
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2.4. Paramagnetic Relaxation Enhancement

By their nature IDPs are not expected to exhibit stable tertiary
structure. Transient interactions between distant regions of the
primary chain can however play important roles in terms of
physiological function,131,132 for example, through early folding
or misfolding events, to avoid aggregation or proteolysis, to
control access to binding sites, or to allow colocalization of
partners via fly casting interactions. Standard 1H−1H NOESY
measurements133 are relatively insensitive to such transient
contacts if they are very rare or weakly populated. To enhance
the sensitivity of detection of such long-range information, a
paramagnetic moiety can be introduced in the protein, so that
the far stronger dipolar relaxation between nuclear spins and
the paramagnetic spin can be detected at much lower
populations, or much further distances. Such paramagnetic
spins are generally introduced into the protein by attaching a
nitroxide group to the reactive side chain of a cysteine that
replaces a native amino acid in a mutated form of the
protein.134−136 The gyromagnetic ratio of the electron spin is
658 times higher than the proton spin, so that observed
relaxation rates are enhanced massively. As an example, the

transverse relaxation rates of an observed proton spin are
enhanced according to:

μ
π

γ μ ωΓ = + +⎜ ⎟⎛
⎝
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where ge is the electron g-factor, γH is the gyromagnetic ratio of
the observed nucleus (proton), se is the electron spin quantum
number, ωH is the proton Larmor frequency, μB is the Bohr
magneton, and μ0 is the permittivity of free space. Similar
expressions are valid for other nuclei or for longitudinal
relaxation rates. The spectral density function, J(ω), comprises
the orientational and distance-dependent components:
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where τc = τrτs/(τr + τs) is defined in terms of τs and τr, the
electron spin and rotational correlation times, respectively. rH−e
is the instantaneous distance between the nuclear and the
electron spins.
Such paramagnetic relaxation enhancements (PRE) are

clearly dominated by the distance distribution functions

Figure 9. (Top) Flow-chart of the seq2rdc approach for fast and reliable prediction of RDCs from unfolded systems. Simulated 1DNH (A) and 1DCαHα
(B) RDCs for ubiquitin using local alignment windows (black lines) and using the seq2rdc approach (red lines) that employs a RDC look-up table
composed of all possible triplets, thereby taking into account the conformational sampling of the residue of interest and that of nearest neighbors.
The RDCs from seq2rdc were subsequently corrected with a scaling factor S(i) taking into account the composition of residues i−7 to i−2 and i+2 to
i+7 (C,D) as well as a length-dependent hyperbolic baseline (E,F). (Bottom) Prediction of RDCs using seq2rdc (red lines) as compared to
experimentally measured RDCs (black lines) and RDCs predicted for f lexible-meccano ensembles using a global alignment tensor for each
conformation (green lines). Data are shown for the following proteins: denatured ubiquitin (G,I,K), denatured GB1 (H,J,L), denatured apo-
myoglobin (M), and denatured Δ131Δ staphylococcal nuclease (N). Reprinted with permission from ref 225. Copyright 2013 Wiley-VCH.
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between the observed nuclear spin and the attached
probe,137−143 but are also dependent on the dynamic properties
of the relaxation active interactions. This can be affected both
by the amplitude and by the time scale of the motion of the
MTSL-bearing side chain, which are not generally known,
although models have been derived from EPR in folded
proteins.144,145 We note that a number of spin probes with
reduced mobility have been proposed that greatly alleviate the
problem of local dynamics,146,147 but that these probes often
require the presence of specific and relatively rigid geometries
on the backbone that make them less appropriate for IDPs.
Mobility of the side chain can be taken into consideration by

introducing an order parameter relating to the motion of the

spin label relative to the molecular frame of each con-
former:148,149
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where the order parameter SH−e
2 describes the motion of the

dipolar interaction vector, and τe = 1/(τi
−1 + τr

−1 + τs
−1) where

τi represents the effective internal correlation time of the spin
label (Figure 4). Using a formalism directly comparable to that
developed for the incorporation of motional effects into the
interpretation of 1H−1H NOESY interactions,149 the order
parameter is then decomposed into radial and angular
components:

Figure 10. (A) Reproduction of the four types of RDCs in the molecular recognition element of Sendai virus NTAIL for the best-fitting model
containing three helical ensembles. Experimental RDCs are shown in red, while back-calculated RDCs from the model are shown in blue. (B)
Molecular representation of the proposed conformational equilibrium of the molecular recognition element of NTAIL in solution. The four
conformations are presented as a single structure for the completely disordered form and as 20 randomly selected conformers for the three helical
conformations. The molecular recognition arginines are displayed in red, while N-capping residues are shown in blue. (C) The amino acid sequence
of the molecular recognition element of NTAIL showing the positions of the selected helices. The cartoon figure illustrates an N-capping aspartic acid
side chain−backbone interaction. (D) The occurrence of different types of amino acids as N-capping residues in helices of folded proteins. Reprinted
with permission from ref 226. Copyright 2013 American Chemical Society.
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where Ωmol is the orientation of the relaxation active vector in
the frame of the conformer. Assuming that the interconversion
between different side-chain conformations is independent of,
and faster than, the interconversion between different discrete
backbone conformers, and that the interconversion between the
different substates over the entire ensemble is also fast as
compared to both chemical shifts and the relaxation rates, the
effective rates can then be calculated for each conformation,
and averaged over an ensemble of backbone conformers:

∑Γ = Γ
=N

1

c

N

c2
total

1
2,

(6)

Whether internal motion of the spin label is taken into
consideration or not, PREs are often interpreted in terms of
distance restraints between the unpaired electron and the
nuclear spin and incorporated in simulated annealing type
calculations using single-copy or more commonly ensemble
restrained molecular dynamics simulation.135,141−143,150−154

Measured relaxation rates can also be incorporated as
constraints,155 or in terms of probability distributions.152,156,157

PREs can also be used to select representative ensembles (vide
infra) from a large pool of possible conformers using the same
kind of formalism.106,112,158,159

As mentioned above, it is important to consider the time
scale of the intrinsic dynamics of the chain with respect to the
effective relaxation rates of the different exchanging substates.
The above formalism is only valid if the interconversion rates
are faster than the differences between the effective relaxation
rates. If this is not the case, the effective relaxation rates would
be quenched by the interconversion between substates, as
predicted by the McConnell equations.160 These intermediate
exchange effects can in principle be used to probe the time
scales of dynamics in highly disordered systems. We also note
that a recent study proposed a promising formalism to combine
paramagnetic relaxation measurements from multiple magnetic
fields to estimate the distribution radius of a disordered group
relative to a rigid portion of the macromolecule independent of
any prior structural knowledge.161 In vacuo high temperature
MD simulation, to enhance the conformational sampling radius,
was also used to study the dynamic regimes that would be
necessary to reproduce experimentally observed PRE profiles
measured in urea-denatured ubiquitin.162 In this case, the
interaction between the nuclear and electron spins was
expressed rather in terms of translational diffusion of two
tethered spheres in a harmonic potential, and the results were
compared to those derived from FRET measurements of
denatured proteins.

2.5. Nuclear Spin Relaxation

Nuclear spin relaxation is sensitive to the reorientational
dynamics of relaxation active interactions; in the case of 15N
spin relaxation this is normally dominated by the dipolar
interaction between the amide proton and nitrogen, providing
sensitive probes of the motional properties of bond vectors
positioned throughout the unfolded protein.163 The informa-
tion that can be derived from such measurements is limited to
time scales shorter than the time taken for complete
decorrelation of the angular correlation function, which in an
IDP is normally in the range of 1−5 ns (at 298 K).

Nevertheless, 15N spin relaxation has been shown to correlate
with local order, or bulkiness of side chains along the peptide
chain,164 and has been used to study backbone and side-chain
motions in intrinsically disordered and partially folded
states.165−173 Increasing computational power and the develop-
ment of MD-dedicated processors have made longer time scale
MD simulations available for comparison with experimental
NMR relaxation rates as was shown recently for partially folded
acyl coenzyme A binding protein (ACBP).174 To address the
interpretation of different spin relaxation rates in unfolded and
partially folded proteins, where the concept of an overall
motion common to all sites that is appropriate for folded
proteins has no real relevance, Bruschweiler et al developed an
MD-based framework for assessing relaxation active correlation
times.175 A recent MD study of the partially disordered DNA
binding basic leucine zipper domain of the yeast transcription
factor GCN4 used chemical shifts and 15N spin relaxation rates
to probe populations of residual helical elements and helix
capping. The authors performed numerous long MD
simulations, and compared relaxation rates calculated from
autocorrelation functions to experimental data.176 Recent
developments have also addressed the important effects of
long disordered chains on the rotational diffusion properties of
multidomain proteins,177−179 which have clear relevance for the
diffusional properties of IDPs in crowded physiological
environments.
Finally, relaxation dispersion CPMG180,181 or rotating frame

relaxation182 experiments provide remarkable insight into the
structural and dynamic origins of enhanced effective transverse
relaxation measurements due to microsecond to millisecond
time-scale exchange between sites experiencing distinct
chemical shifts. Even when the minor species represents a
few percent of the total population, these experiments can be
used to determine the conformational behavior of the otherwise
barely visible state, and have been successfully used to
characterize partially folded intermediates and to characterize
IDP folding-upon-binding events.183−185 Although the physical
basis of interactions between IDPs and their partner proteins is
the subject of a growing number of theoretical186−188 and
numerical189−191 studies, there are still relatively few exper-
imental examples of atomic resolution characterizations of IDP
interactions.10 In this respect, NMR relaxation dispersion
studies hold great promise for our understanding of the
molecular mechanisms underlying the function of IDPs, and in
particular their relationship to intrinsic conformational
sampling, the subject of this Review.
2.6. Residual Dipolar Couplings

Dipolar couplings between pairs of nuclei are expected to
average to zero in free solution due to the orientational
averaging of the dipolar interaction, for example, for two
covalently bound nuclei i and j:

γγ μ

π
= −

ℏ Ω −
D

r4
3 cos 1

2ij
i j 0

2 3

2

(7)

where Ω is the orientation of the internuclear vector with
respect to the static magnetic field, and r is the vibrationally
averaged distance between nuclei i and j. The angular brackets
report on the average over all orientations sampled by the
different substates present in solution, and exchanging with
rates faster than the millisecond range. Although the static value
of dipolar couplings measured between a single pair of
covalently bound spins can be very large (11 kHz for

Chemical Reviews Review

dx.doi.org/10.1021/cr400688u | Chem. Rev. 2014, 114, 6632−66606642



15N−1HN spin pair), in the absence of a preferential order in
the sample, all orientations are equivalently sampled and zero
coupling is measured. If a protein is dissolved in a dilute liquid
crystalline medium, the angular average is no longer uniform,
some orientations have higher probability, so that the measured
dipolar coupling in eq 7 has a nonzero, or residual, value.192−194

Such residual dipolar couplings (RDCs) represent extremely
powerful probes of angular order, and this long-range order can
be used to complement short-range distance information, for
example, to determine the orientation of different structural
elements in folded proteins. RDCs have also been successfully
used in folded proteins to probe time and ensemble-averaged
conformational equilibria at atomic resolution, on time scales
up to the millisecond.194−198 Most importantly for this Review,
RDCs provide precise probes of the conformational behavior of
IDPs in solution.62,199−204

Alignment of the protein results from a restriction of the
conformational sampling due to the presence of the liquid
crystalline medium such as lipid bicelles,192 filamentous
phages,205−207 lyotropic ethylene glycol/alcohol phases,208

and polyacrylamide gels that have been strained either laterally
or longitudinally to produce anisotropic cavities.209,210 RDCs
are measured as the difference between the experimental
measurement in the presence and absence of the medium; in
the latter case, only the appropriate scalar coupling is measured.
RDCs are commonly measured in folded proteins in alignment
media that are either neutral or electrostatically charged,
resulting in either steric repulsion or repulsion between charged
groups on the protein surface and the alignment medium.
RDCs measured in IDPs, on the other hand, are almost
universally measured in sterically aligning media, because of the
relative simplicity of prediction of the alignment tensor under
these conditions (based on the three-dimensional shape of the
conformation).211 As an exception to this rule, we note that
electrostatic alignment of IDPs with strong charge polarity
along the chain has been successfully shown to behave as
predicted on the basis of electric fields calculated between
solute surface charges and the electric field of the phage.212

1DHN RDCs were first measured in denatured forms of folded
proteins, with predominantly negatively signed couplings
exhibiting a characteristic bell-shaped dependence with respect
to the primary sequence.199−201,213 These observations were
explained on the basis of the nearly perpendicular orientation of
the N−HN bond vector relative to the principal alignment axis
and therefore the static magnetic field direction (concerning
the sign), and the chain like nature of the protein, increasing
the efficiency of the angular average in eq 7 toward the termini
of the chain.200,214,215 Two important findings resulted from
these experiments; the first concerned the high sensitivity of
RDCs to elements of secondary structure in partially folded
IDPs, while the second concerned the range of experimental
RDCs measured at different sites along the primary chain, even
in the presence of high concentrations of denaturant. It was
evident that RDCs were highly sensitive to differential order;
RDCs measured in the immediate vicinity of prolines (more
rigid) gave rise to larger RDCs than those measured in the
vicinity of glycines (more flexible).62 It was also noted that the
volume of the side chain, or bulkiness, correlated with the
magnitude of RDCs measured in IDPs.216 It was also noted that
the presence of local helical elements would align the N−HN

bond vector along the direction of the magnetic field, and
therefore change the sign of the RDC as compared to the
otherwise unfolded chain.200,214 These observations pointed the

way toward the development of qualitative, and later more
quantitative, procedures for interpreting experimentally meas-
ured RDCs in terms of conformational behavior.
While CSs can be predicted using only local conformational

sampling information, RDCs depend on both local and long-
range structure, complicating their analysis. In folded proteins,
the angular expression shown in eq 7 can be resolved into two
independent terms, corresponding to an alignment tensor (or
order matrix) describing the orientational properties of the
molecule with respect to the magnetic field, and the orientation
of each internuclear vector relative to the principal axis system
of this alignment tensor:

η φ= ϑ + ϑD D A P[ (cos ) /2 sin cos 2 ]zzmax 2
2

(8)

Azz and η define the axial and rhombic components of the
alignment tensor, which report on the level and nature of the
alignment of the global conformation, and {ϑφ} the orientation
of the internuclear vector. In folded proteins, RDCs then report
on the orientation of internuclear bond vectors in distant parts
of the molecule that can provide extremely powerful conforma-
tional constraints.217 Such an approach assumes that the
alignment tensor can be considered to be invariant for all copies
of folded proteins in the statistical ensemble and that the tensor
is independent of the conformational behavior of each
internuclear vector; these assumptions are clearly not justifiable
for unfolded proteins.
Analytical approaches have been developed that model the

unfolded protein as a random flight chain or a semistiff polymer
combined with a mean-field diffusion equation.215,218−220 Such
studies resulted in a closed-form analytical expression whereby
the expected RDC can be expressed in terms of the first few
terms of a Taylor expansion over N−0.5, where N is the number
of independent segments comprising the chain. The bell-
shaped dependence and efficiency of RDC averaging as a
function of the length of the chain were both correctly
predicted using these models. We note that while affording
insight, such approaches remain essentially homopolymeric,
and therefore do not yet provide a framework for describing
differential, sequence-dependent RDCs along the peptide chain,
which remains the principal advantage of ensemble-based
approaches.
To account for the steric alignment of each conformation in

a statistical coil ensemble, it is necessary to numerically predict
RDCs on the basis of the shape of each conformer, essentially
by calculating Azz, η, ϑ, and φ in eq 8 for every structure.221

The use of large conformational ensembles to predict RDCs in
this way generally reproduced both the local and the global
distribution of experimental N−HN RDCs measured along the
length of the unfolded chain.62,202,215 As described below,
refinement of backbone sampling potentials is necessary to
simultaneously reproduce RDCs measured between different
nuclei in the peptide unit, especially when local conformational
propensities deviate from the statistical coil used for the
simulation. Simulations of homopolymers exhibit featureless
bell-shaped curves, while those carried out using heteropoly-
meric sequences exhibited the heterogeneous distribution of
RDCs observed in IDPs or denatured proteins (Figure 5). This
observation confirms that the observed distributions depend
strongly on the differential flexibility and conformational
heterogeneity of the primary sequence.
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2.7. Insight into RDC Averaging Properties from Numerical
Simulation

The ability to predict average RDC values from a statistical coil
ensemble thus establishes references for comparison and
possible identification of deviations from so-called random
coil behavior. Simulation can also be used to probe the
conformational origin of experimentally observed fluctuations
in terms of specific or persistent local or long-range structure in
hypothesis-driven or trial-and-error type approaches. As an
example of the application of such approaches, N−HN RDCs
measured from the monomeric, intrinsically disordered form of
α-synuclein, although in reasonable agreement with simulation
using the statistical coil, supporting the model that the protein
was lacking in secondary structure, were shown to be less well-
reproduced in the N- and C-terminal regions of the protein.222

A transient contact had been observed from experimental PREs
between these regions that carry complementary net charges,
and experimental RDCs were shown to be significantly better
reproduced when the unfolded ensemble also contained this
weak contact. This example serves as a reminder of the dual
dependence of RDCs on both local structural propensity and
long-range order. Figure 5 illustrates the modulation of the
underlying bell-shaped RDC baseline in the presence of
transient contacts between different regions of the chain,
predicted from numerical simulation. RDCs in the region
between the two disordered segments experiencing long-range
contacts are almost entirely quenched due to this modu-
lation.112 Note that the simulations show predictions for
omnipresent contacts between different regions of the chain.
When exchange is fast on the chemical shift time scale, these
effects would be expected to be linearly population-weighted
with a bell-shaped baseline when transiently populated.
Importantly it was noted that the dependence on local and

long-range conformational degrees of freedom throughout the
molecule is responsible for the highly inefficient convergence
properties of ensemble-averaged RDCs calculated from
statistical coil ensembles, which require many tens of thousands
of conformers before reaching a stable average.62,223 This
observation has clear implications not only for portability of
ensemble representations, but also for subsequently designed
restrained or selected ensembles (vide infra). The problem can
be alleviated by using a smaller number of conformers if the
protein were divided into short, uncoupled segments (local
alignment windows) and calculating RDCs using alignment
tensors for each overlapping segment.224 However, if only local
alignment is considered, all long-range order is lost, removing
one of the richest sources of conformational information
available from RDCs, and potentially leading to misinter-
pretation of long-range effects in terms of local sampling.
Importantly, therefore, the combination of parametrized
analytical forms of the underlying baseline modulations
shown in Figure 5 and the efficiently averaged RDCs using
local alignment windows was shown to successfully account for
both local and long-range averaging (Figure 6).112,223

Ensemble-based simulation also demonstrated that RDCs
between different pairs of spins in the peptide unit provide
complementary information about the underlying conforma-
tional sampling. Combinations of multiple RDCs significantly
raise degeneracy between different sampling regimes that can
give rise to the measured data.105 Figure 7 shows the
dependences of different RDCs predicted for residues i−1, i,
and i+1 on the {ϕψ} sampling of amino acid i.82 1DNH exhibits
the expected sensitivity to αR sampling, but also degeneracy

between βS and βP, either for the amino acid of interest or for
immediate neighbors. In general, dependence on sampling of
immediate neighbors as well as the amino acid of interest
complicates interpretation in terms of local conformational
basins, and clearly demonstrates why no single RDC can
represent a “read-out” value for conformational propensity.
This also underlines the importance of using ensemble
approaches to interpret experimental RDCs, where neighbor
effects are explicitly taken into account.

2.8. Deconvoluting Conformational Factors Contributing
to RDCs Measured in IDPs

Numerical simulations can provide remarkable insight into the
complex origin of RDCs from unfolded systems. In a recent
study, extensive f lexible-meccano simulations were performed to
identify the importance of local and global sequence
determinants for the predicted RDCs.225 On the left-hand
side of Figure 8, the sampling of the central amino acid is
uniform, from −180° to 180° for both ϕ and ψ, but the
remainder of the sequence samples the conformational
potential of an alanine residue. On the right-hand side of the
figure, the whole sequence samples Ramachandran space
uniformly. It is clear that constraining the flanking residues to
the more physical model significantly modulates the predicted
RDCs, showing how the dependence on the {ϕ,ψ} sampling of
the amino acid of interest propagates along the chain. Removal
of explicit steric interactions does not change this result. The
angular sampling available to the peptide of interest therefore
depends on the backbone dihedral distribution of the
neighbors, which projects the peptide of interest into a
restricted cone of angular space. This study demonstrated
that RDC prediction can be deconvoluted to only four
contributing factors: the sampling of the amino acid of interest,
the conformational sampling of the nearest-neighbors that
defines the orientational space of the amino acid of interest,
sequence-dependent scaling factors that correct the local
alignment tensor (a polyglycine will be more flexible and
therefore exhibit lower order than a polyproline), and a length-
dependent baseline to incorporate the polymeric nature of the
unfolded protein, which in the case of transient tertiary contacts
will be modulated by these in the manner shown in Figure 5. A
database of combinations of triplets of amino acids, combined
with rigidity corrections dependent on the composition of the
six neighbors on either side, defines to a very good
approximation (Figure 9) expected values of RDCs in unfolded
states (seq2rdc algorithm). While ensemble averages are still
generally used, this demonstration shows that it is possible to
develop a look-up table for expected RDCs from an unfolded
polymer that provides both important physical insight and a
significant improvement in efficiency of calculating random coil
RDC values.

2.9. Comparison with Data Sets Comprising Multiple
Experimental RDCs and CSs

In an early example of the use of RDCs for the study of
unfolded states, a combination of multiple RDC types was used
to investigate the conformational behavior of urea-denatured
ubiquitin. N−HN, C′−HN, C′−Cα, Cα−Hα, HN−HN, and HN−
Hα RDCs clearly contradicted statistical coil models, but were
shown to be in agreement with potential energy basins with
higher propensities to sample more extended regions of
Ramachandran space (βS and βP) and lower propensities to
sample helical regions (αR).105 This example is particularly
revealing, because N−HN RDCs alone were in general
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agreement with the statistical coil model, underlining the
importance of measuring the other RDC types to extract
quantitative information.
Multiple RDC types (N−HN, C′−HN, C′−Cα, and Cα−Hα)

were also measured from the C-terminal domain of Sendai virus
nucleoprotein.226 13C CSs showed a high (but not complete) α-
helical propensity in the phosphoprotein binding site. To
examine the details of the helical sampling in this protein, a
systematic approach was developed, postulating the presence of
all possible helical elements. Flexible-meccano ensembles were
calculated for each of 154 helical lengths (with a minimum of
four residues) between the beginning and end of the helical
region defined by the CSs. Inspection of the predicted RDCs
from each of these ensembles already revealed that “dipolar
waves” of RDC values along the sequence varied significantly
depending on the length and termination of the helix.227 These
oscillations, due to the orientation of the alignment axis relative
to the helix, allowed for a systematic combination of helical
ensembles and their populations, in increasingly complex
equilibria, until the data were adequately reproduced, and no
significant improvement was achieved with additional heli-
ces.226 This approach demonstrated that all experimental data
could be reproduced from only three significantly populated
helical elements, all stabilized by N-capping interactions, in
exchange with an unfolded population (Figure 10). Impor-
tantly, this analysis demonstrates that CSs and RDCs are
complementary in their ability to distinguish cooperative and
noncooperative secondary structure formation. While CSs
report essentially on the conformational properties of an
amino acid and its neighbors, so that a peptide in a long helix
can have the same CSs as the central amino acid of a helical
tripeptide, RDCs report on the length of the helices present in
the conformational equilibrium, as well as their capping
characteristics, and can therefore distinguish these scenarios.
CSs, on the other hand, provide a more robust measure of the
absolute level of secondary structure, as opposed to RDCs
whose absolute values depend on the level of alignment.
Application of the approach to a homologous domain from

Measles virus, this time combining CSs and RDCs, resulted in a
similar helical ensemble in the interaction site, comprising four
helical elements, all stabilized by amino acids favoring N-

capping interactions.228 Similarly, N−HN, C′−HN, C′−Cα, and
Cα−Hα RDCs measured from the intrinsically disordered
transactivation domain of p53 were shown to agree with the
presence of a single turn α-helical element in the MDM2
binding site, also stabilized by an N-capping interaction, and
populated to approximately 30%. 229 N-capping appears to be a
general mode adopted by IDP sequences to place-mark nascent
helical elements in otherwise unfolded chains.
In all of the above cases, the analysis of RDCs was guided by

the observation from 13C CSs that a helical element was
present. More generally, however, there is a need for the
development of representative ensembles of conformers
directly from experimental data, a challenge that has motivated
considerable interest over recent years.15,18,20,142,230

3. ANALYTICAL APPROACHES TO DESCRIBING THE
FREE-ENERGY LANDSCAPE

The development of ensemble representations of IDPs requires
the resolution of a number of important problems. These
include the assurance of a broad enough sampling of the
available conformational space, the optimization of the number
of structures present in the ensemble average, the combination
of different experimental restraints, and the integration of
appropriate dynamic averaging time scales of each experimental
parameter within the conformational ensemble. More generally,
as mentioned above, overfitting, under-determination, and
validation of ensembles remain critical challenges.

3.1. Molecular Dynamics-Based Approaches

One approach to the development of such ensembles is to use
restrained molecular dynamics (MD) or restrained replica-
exchange MD (REMD) calculations. In restrained MD,
additional terms are incorporated into a physical potential
energy function to bias the conformational sampling, to drive a
single or, more appropriately in the case of IDPs, multiple
copies of the protein into conformations in overall agreement
with experimental data.113,152,153,231−233 The ability to predict
CSs on the basis of the local geometry and atomic proximity as
is the case for the program CamShift allows for CSs to be
calculated rapidly at each step of the trajectory, making such
approaches feasible for CSs. Similarly, the steric molecular

Figure 11. Overview of the f lexible-meccano/ASTEROIDS approach for deriving representative ensembles of IDPs. An initial pool of structures is
created using f lexible-meccano that is made sufficiently large to maximize sampling of conformational space. The genetic algorithm ASTEROIDS is
used to select equivalent, representative subensembles in agreement with experimental data such as CSs, RDCs, PREs, and SAXS data. The selected
subensembles are subsequently analyzed in terms of backbone conformational sampling and long-range structure.
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alignment tensor of each copy in the ensemble can be
calculated at each step of the simulation,155 thereby allowing for
the effect of the instantaneous dipolar coupling on the change
in shape of the protein. Assuming that correlation times for
local and long-range motions have been estimated, PREs then
depend only on the geometric properties of the molecule, so
that calculation of the appropriate restraint energy term is again
trivial.234

MD-based approaches most closely resemble the commonly
used simulated annealling protocols used for structure
determination of folded proteins, and are therefore the most
accessible to NMR spectroscopists and structural biologists in
general. However, they may not be the most appropriate for
IDPs, as it remains unclear how the introduction of nonphysical
restraints into the potential energy force field affects the
completeness of phase space sampling, which is of course
critical for such under-determined systems. An accurate
representation of the Boltzmann-weighted distribution of
conformers can only be faithfully reproduced if sampling is as

complete as possible. Using REMD, sampling is enhanced by
exchanging between copies of the biomolecular system that
evolve under more or less constrained conditions (for example,
at different temperatures) using Monte Carlo criteria.235,236

Many groups have applied such techniques to the study of IDPs
by directly restraining against experimental data or comparing
the resu l t ing ensembles to exper imenta l NMR
data.154,191,237−242 A number of recent articles have addressed
the statistical distribution produced by restrained replica-
exchange ensemble simulations243−245 and identified the
conditions under which restrained MD is formally consistent
with the statistical distribution produced using more rigorous
maximum entropy principles.246

Restraint-free MD does not suffer from the combination of
empirical and physical force field terms, and can be directly
compared to experimental data. A great deal of valuable insight
has been gained from MD simulations of protein folding and
unfolding or denaturation, and although this paradigm is
strongly related to the simulation of IDPs, this work will not be
covered in more detail here.247−252 MD simulations of Abeta40
and Abeta42, peptides associated with Alzheimer’s disease, were
also compared to cross relaxation, CS, and scalar coupling
data.237,253 More recently, a long (200 μs) fully solvated MD
simulation was used to study the acid-unfolded state of the
protein ACBP, comparing NMR spin relaxation rates and long-
range contacts derived from experimental PREs.174 Even for
such long time-scale simulations, sampling remains a problem,
because the conformational space sampled by a single MD
trajectory is likely to be restricted as compared to the highly
heterogeneous statistical ensemble, so that it still remains
challenging to ensure efficient sampling of the phase space
accessible to the unfolded state. The behavior of unfolded
chains depends strongly on protein−solvent interactions, which
means that the inaccuracies of currently accessible water
models to reproduce solvent behavior, including fluctuating
weak interactions such as solvent−solute hydrogen bonding,
may compromise the accuracy of MD simulations of IDPs.
Nevertheless, there is a great deal to learn from such
simulations, not least because this is one of the few approaches
that can provide insight into the characteristic time scales of
IDP dynamics, and the molecular mechanisms controlling
protein folding upon binding.241,254−256 Comparison with
experimental data will no doubt contribute to the already
active development of more accurate force fields that are
applicable for simulations of IDPs.257−259

The statistical sampling problem can also be addressed using
enhanced sampling approaches that directly modify the applied
force field, such as metadynamics,260 where the potential energy
surface is modulated as a function of the memory of the
previous conformational search, forcing the system to explore
conformations that have not yet been visited. Such methods,
which can be usefully combined with replica-exchange,261 have
been applied to highly dynamic peptides and proteins.262 The
resulting free-energy surfaces, derived from the inverse of the
applied potentials, can be used to predict experimental NMR
data to gauge the accuracy of the resultant sampling.263,264

Similarly, a recent study incorporated CSs as collective variables
to guide the metadynamics calculation.265 Another approach to
enhanced sampling uses accelerated molecular dynamics
(AMD),266−268 which modulates the potential energy surface
in a very simple way, scaling the potential energy so as to
reduce the barriers between substates, but crucially retaining
the rugosity of the underlying surface. This increases the

Figure 12. Modification of the f lexible-meccano algorithm to include
explicit sampling of urea molecules on the protein backbone. (A)
Application of the explicit urea sampling to urea-denatured ubiquitin
showing the average urea binding rate along the sequence from 50
ensembles selected by ASTEROIDS on the basis of multiple RDCs.
Conformers constructed using f lexible-meccano with explicit urea
sampling with different degrees of saturation (10−40%) are shown in
sticks representations. (B) Comparison of experimental RDCs (red)
and back-calculated RDCs from selected ASTEROIDS ensembles
(blue). The selections were carried out from a pool of ubiquitin
conformers carrying explicit urea sampling with all possible degrees of
saturation. Reprinted with permission from ref 287. Copyright 2012
American Chemical Society.
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probability of transitions between existing energy minima and
allows for highly efficient sampling of conformational space.
AMD has been combined with NMR, predominantly for the
study of long time scale motions in folded proteins,269 but also
for the study of β-turn regions in the K18 domain of Tau
protein,111 and the proline-rich domain of p53 transactivation
domain.229 In both cases, deviation from random coil RDC
values was observed experimentally, and the statistical coil
sampling for the regions of interest was replaced by AMD-
derived {ϕ,ψ} distributions. Average RDCs using these
distributions reproduced measured values within experimental
error. This again indicates that enhanced sampling of the
available potential energy surface can provide further insight
when statistical coil sampling fails, although in general classical
MD force fields seem to describe amino-acid specific

differences less well than statistical coil models, most notably
overestimating α-helical populations.128,257,259

3.2. Ensemble Selection Approaches To Mapping the
Potential Energy Surface

An alternative approach has been developed over recent years
that oversamples conformational space in as unbiased a way as
possible, and then selects representative subensembles from
this sampling that are in agreement with experimental data. The
advantages of such approaches are that the underlying
conformational sampling available to the chain is established
independently of the experimental data, the extent of the
sampling can be tested for completeness at this stage, and the
delineation of regions of conformational space that can give rise
to the experimental data occurs in a second step. The first of
such approaches to be developed for unfolded proteins is

Figure 13. Selection of representative ensembles using ASTEROIDS on the basis of experimental CSs. (A−D) Agreement between experimental
secondary chemical shifts (blue) in the C-terminal domain, NTAIL, of Sendai virus nucleoprotein and back-calculated secondary chemical shifts (red)
from an ASTEROIDS-selected ensemble comprising 200 conformers. (E) Reproduction of independent data not used in the ASTEROIDS selection.
Comparison of experimental 1DNH RDCs (blue) with back-calculated RDCs from a f lexible-meccano ensemble of 50 000 conformers constructed
using the backbone dihedral angles obtained on the basis of experimental 13Cα, 13Cβ, 13C′, and 15N chemical shifts (red). (F) Comparison of
experimental 15N secondary chemical shifts (blue) and secondary chemical shifts back-calculated from the ASTEROIDS ensemble selected on the
basis of 13Cα, 13Cβ, and 13C′ (red). Representative conformers of NTAIL from the ASTEROIDS ensembles are shown in cartoons representations.
Reprinted with permission from ref 296. Copyright 2012 American Chemical Society.
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ENSEMBLE,270,271 which uses the statistical coil generator
TraDES,272 and diverse MD-based protocols to sample
available conformational space. The selection protocol, which
assigns weights to the initial pool of conformers in a way that
best reproduces the experimental data, has been applied to the
study of the unfolded form of drkN SH3 domain,158 the cell
cycle IDP Sic1,273 and protein phosphatase 1 regulators.274,275

Recently, unbiased MD simulations were combined with NMR
restraints, to derive an ensemble of conformations for
phosphorylated arginine-serine repeats, which were in best
agreement with experimental N−HN, Cα−Hα, Cα−C′ RDCs
and 3JHN−Hα scalar couplings.110 The selection was achieved
using a combination of a Monte-Carlo search and exhaustive
scanning. Thirty conformations were estimated to be optimal to
avoid under- or overfitting of the NMR data. The ensemble was
analyzed by calculation of the Jensen−Shannon divergence and

partial least-squares analysis. The ensembles were compared to
1JCα−Hα and

1JCα−Cβ couplings together with chemical shifts for
the backbone and 3JNCγ and

3JC′Cγ couplings for the side-chain
orientations.
A similar approach was developed by Stultz et al. where the

prior pool of structures is assembled using REMD simulations
of extended, or fragmented, pieces of the protein that are then
reassembled to enhance sampling diversity.276 This prior pool is
then clustered on the basis of energetic and topological
considerations into a smaller library of a few hundred
conformers that is used to represent the available sampling,
and weights are again assigned to these conformers as a
function of agreement with experimental data. The approach
was applied to the study of a domain of Tau protein277 and to
monomeric α-synuclein.278 In a more recent study of α-
synuclein, in addition to monomeric conformers, the initial
pool was also populated with trimeric and tetrameric
conformations obtained by threading the primary sequence of
α-synuclein through crystallographic structures of myosin and
ferritin.279 These conformers represented over one-third of all
populations in the final selection against experimental CSs,
despite the fact that they would be effectively spectroscopically
invisible under the experimental conditions. Although it is not
possible to disprove the presence of such species (in the
absence of SAXS data, for example), there is no experimental
evidence for their presence. This illustrates one of the risks
involved in ensemble selection, where the nature of the selected
ensemble depends entirely on the reliability of the prior
sampling. We note that similar sample and select type
approaches have been developed for the ensemble representa-
tion of RNA molecules and multidomain proteins on the basis
of both NMR and SAXS data.280−285

The ASTEROIDS (A Selection Tool for Ensemble
Representation Of Intrinsically Disordered States) approach
uses the f lexible-meccano statistical coil approach to establish the
prior sampling of phase space available to an unfolded model of
the protein. The experimental data are not used at this stage,
the aim being to sample the full energy landscape accessible to
an ultrasimple statistical coil model for the specific primary
sequence in the absence of bias either from experimental data
or from molecular dynamics force fields. Experimental restraints
are only used in the second, selection step, performed by the
ASTEROIDS algorithm,112,223,286 which delimits ensembles
sampling conformational space that can give rise to the
experimental data (Figure 11). ASTEROIDS uses a genetic
algorithm, where one conformer is represented by a gene, the
size of the chromosome (n) is constant, and generations are
obtained by random selection, mutations, and crossings of
conformers. Populations of different conformers are not
optimized, so that pi = 1/n for all substates i (the population
of such a state is augmented by selection of similar substates
with the same characteristics relative to the experimental data).
Every statistical coil definition carries bias depending on the

specific protocol used to create the model, so that care must be
taken to test the effect of this bias. Dependence of subsequent
selections on the initial f lexible-meccano sampling can been
tested by modifying the initial sampling and comparing the
characteristics of the final selection. Because of the low
probability of randomly producing significant amounts of
secondary structure directly from a statistical pool, iterative
cycling of biased f lexible-meccano sampling and ASTEROIDS
selection can be used to modify the amino-acid specific
potentials using previous selections until agreement is achieved

Figure 14. Systematic assessment of the accuracy to which
experimental CSs and RDCs can map site-specific conformational
sampling in IDPs. (A) An ensemble of 20 000 conformers of a 60
amino acid protein of arbitrary sequence was generated using f lexible-
meccano with three distinct five-residue regions oversampling α-helix
(αR), β-strand (βS), and the poly proline II region (βP). Predicted
CSs and RDCs from this ensemble were used as target for
ASTEROIDS ensemble selections. The Ramachandran plots show
difference maps between the statistical coil sampling and the sampling
obtained by ASTEROIDS in the three regions. (B) If only 13C
chemical shifts are used, the populations of αR and βS can be
accurately determined, while degeneracy is observed between the βP
region and the upper αR region. (C) The inclusion of the
experimentally more volatile 1HN and 15N CSs in the ensemble
selection raises this degeneracy. (D) Conformational sampling
determined on the basis of RDCs alone shows degeneracy between
the β-extended regions. (E) By combining CSs with RDCs, the
ensemble selection accurately defines all (αR, βS, and βP) populations.
Reprinted in part with permission from ref 82. Copyright 2012
American Chemical Society.

Chemical Reviews Review

dx.doi.org/10.1021/cr400688u | Chem. Rev. 2014, 114, 6632−66606648



between experimental and back-calculated data. The f lexible-
meccano/ASTEROIDS approach is used as a means to map the
potential energy landscape sampled by the protein backbone,
and as such repetition of the procedure determines solutions
that are not unique, containing different structures for each
selection. The backbone sampling characteristics, however, do
not vary between selections, which are converged and therefore
unique in terms of conformational substates and their
populations. This would not be the case if sampling were
insufficiently complete. It is also important to note that the
conformational ensembles are used to map complex probability
distributions in terms of a distribution of discrete states.
Although ensemble approaches are optimized to reproduce the
true conformational equilibrium, the individual structures
comprising the ensembles depend on the presence of all
other members of the ensemble, which can only be mean-
ingfully interpreted as a whole.

3.3. Application of Ensemble Descriptions to Protein
Denaturation in the Presence of Urea

The behavior of IDPs is defined to a large extent by their
interaction with solvent molecules, so that while urea-denatured
proteins are not intrinsically disordered, the description of their

conformational behavior in solution is of direct relevance for
understanding the stability of IDPs and unfolded proteins in
general. In this context, the ASTEROIDS approach was initially
applied to urea-denatured ubiquitin for which a large set of
RDCs had been measured from throughout the peptide
chain.105 The potential energy basins for each amino acid are
derived from the simultaneous analysis of multiple comple-
mentary experimental RDCs measured on each peptide unit.
This identified local conformational sampling properties of the
protein, highlighting modifications of backbone sampling of
charged or polar amino acids, in particular threonine, glutamic
acid, and arginine.
This approach highlighted two important points: the first

being that for alignment windows of 15 amino acids 200
distinct conformations are required to reach RDC convergence.
It was shown that the use of 20 conformers still reproduces the
experimental data, but the conformational sampling can be
incorrect because the average is not yet stable. Consequently,
the attractive idea of reducing the number of conformers to a
minimum that reproduces the experimental data can be
dangerous as it may result in a poorly converged solution.
Within this range, the optimal number of structures is
determined by repeating the selection analysis and comparing

Figure 15. Site-specific conformational sampling in the K32 construct of Tau protein derived from ASTEROIDS selections against experimental CSs
and RDCs. (A−F) Agreement between experimental CSs and RDCs (red) and those back-calculated from selected ASTEROIDS ensembles (blue).
(G) Populations in the four regions of Ramachandran space defined in Figure 2. The populations were derived from the selected ASTEROIDS
ensembles on the basis of CSs and RDCs (blue, green, red, and magenta) and compared to the populations in the statistical coil library (black). (H)
Ramachandran plots of the region G273−V287 of K32 showing enhanced βP sampling. Reprinted in part with permission from ref 298. Copyright
2014 Cell Press.
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to independent experimental data that have not been included
in the target function. This emphasis on the predictive capacity
of ensemble descriptions is crucial for testing the accuracy and
robustness of the solutions. Second, the demonstration that the
modulation of the RDC profile due to long-range information
can be combined with the efficient local alignment approach
(Figure 6), to simultaneously account for both local and long-
range order contributions within the same ensemble average,
paves the way to combine RDCs with, for example, PREs and
SAXS restraints (vide infra).
The application of ASTEROIDS to the study of denatured

ubiquitin was taken one step further by modifying the f lexible-
meccano approach to construct full-atom conformational
ensembles, including side-chain conformations derived from
rotamer libraries, and random binding of explicit urea
molecules to the protein backbone that modifies the potential
energy basins of each amino acid. The ASTEROIDS selection
then determines the number of bound urea molecules over the
ensemble, and identifies the sites that have the highest
propensity for binding (Figure 12).287 The direct-binding
model of urea to the protein backbone is thus shown to be
compatible with all available experimental data. Between 30%
and 40% of the backbone peptide groups bind urea, in
agreement with independent results from a model-free analysis
of small-angle neutron and X-ray scattering data.288 The trend
of urea-binding reveals a higher level in the central part of the
protein, resembling independent results derived from chemical
shift mapping.

3.4. Combining Local and Long-Range Effects for
Ensemble Interpretation of RDCs

The combination of RDCs with PREs presents a more difficult
problem, as a significant modulation of RDCs is expected due
to the existence of long-range intrachain contacts (Figures 5, 6).
It was subsequently shown, again using the ASTEROIDS
approach, that RDCs from the protein α-synuclein were more
accurately predicted using a combination of local alignment and
RDC modulation due to long-range contact information
derived from PREs, as compared to a prediction based on
local structure alone.112 The same study also demonstrated that
the inclusion of an explicit term describing the dynamics of the
MTSL-carrying side chain better reproduced passive PREs not
included in the selection. ASTEROIDS ensembles were
recently derived from PREs and RDCs to study the modulation
of intrinsic helical propensity in the protein ACTR (activator
for thyroid hormone and retinoid receptors).289 Eight amino
acid mutations were used to vary helical populations and to
study the coupling between secondary and tertiary structure
formation. ASTEROIDS ensembles derived from PRE data
were also used to describe changes in long-range order in acid-
unfolded ACBP induced by single-point mutations previously
identified to be important for the folding of the protein.290

3.5. Ensemble Interpretation of CSs for the Study of Local
Conformational Propensity

CSs are extremely sensitive to backbone conformation, and the
possibility of exploiting this sensitivity to map the potential
energy surface of IDPs is particularly attractive considering that

Figure 16. Structural ensemble description of Tau from experimental PREs (left-hand panels), CSs (top right-hand panels), RDCs (middle right-
hand panel), and SAXS data (bottom panel). In all panels, the experimental data (red) are compared to those back-calculated from selected
ASTEROIDS ensembles (blue). Reprinted in part with permission from ref 298. Copyright 2014 Cell Press.
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the determination of (backbone) CSs is a prerequisite for any
NMR study. This possibility becomes even more pertinent with
the recent developments within the field of in-cell NMR291−294

that allow the observation of proteins within their physiological
environment, but where additional structural parameters,
besides CSs, cannot be easily measured.295 The advantage of
CSs is that they depend in a different, complementary manner
on the backbone conformational sampling (Figure 3) and
therefore, in principle, allow a mapping of the potential energy
surface in a site-specific manner.
ASTEROIDS was also applied to experimental CSs, to study

the conformational sampling of the intrinsically disordered tail
of Sendai virus nucleoprotein at atomic resolution.296 Starting
from a pool of statistical coil conformers containing negligible
secondary structure, an iterative approach was developed where
ensemble selections were carried out followed by regeneration
of the pool using the site-specific potentials derived from the
selected ensemble in the previous iteration. Five iterations of
this kind were necessary to achieve convergence with respect to
the experimental data in the case of Sendai virus nucleoprotein
that contains a molecular recognition element populating up to
75% α-helical conformations. Excellent agreement was obtained
between the experimental CSs and those back-calculated from
selected ensembles each comprising 200 conformers (Figure
13). The site-specific conformational sampling of the tail of
Sendai virus nucleoprotein derived from the chemical shifts

revealed a slightly enhanced propensity to populate PPII
conformations as compared to the statistical coil populations
employed within f lexible-meccano.
It is important to consider the relative weights of each CS

type in the ensemble selections to avoid overfitting of one data
type as compared to the other. One way of avoiding overfitting,
and of testing the consistency of ensembles derived from CSs,
is to back-calculate independent parameters that were not used
in the ensemble selection. In the case of the tail of Sendai virus
nucleoprotein, the structural ensembles derived from CSs alone
were capable of reproducing experimentally measured 1H−15N
RDCs both within the α-helical molecular recognition element
as well as in the flanking regions testifying to the predictive
nature of the CS-derived ensembles (Figure 13).

3.6. Calibration of Ensemble Mapping of Potential Energy
Surfaces − How Well Can We Do?

Although the conformational dependences of individual CSs
and RDCs could be predicted (see Figures 3 and 7), no
analytical framework for the determination of the potential
energy landscape of unfolded proteins at amino acid specific
resolution was yet available. It therefore remained unclear how
accurately CSs and RDCs could be used to define backbone
conformational sampling in IDPs. Experimental data are often
combined to best restrain the ensemble, but without calibration
it is unclear what resolution can be achieved, or which regions
of Ramachandran space can be differentiated on the basis of the

Figure 17. Analysis of selected ASTEROIDS ensembles of Tau protein. (Top) Comparison of experimental 1DNH (black) with RDCs obtained from
a statistical coil ensemble (blue) and with RDCs back-calculated from an ASTEROIDS ensemble of Tau selected on the basis of CSs only (red).
(Bottom panels) Populations in the four regions of Ramachandran space defined in Figure 2. The populations were derived from the selected
ASTEROIDS ensembles on the basis of CSs, RDCs, PREs, and SAXS data (blue, green, red, and magenta) and compared to the populations in the
statistical coil library (black). The black circles indicate positions of proline residues. The shaded bars indicate regions for which the derived
conformational sampling is significantly different from statistical coil, and which coincide with improved agreement between ASTEROIDS predicted
1DNH RDCs as compared to statistical coil. Reprinted in part with permission from ref 298. Copyright 2014 Cell Press.
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available data. Having access to the algorithms described above,
a recent study performed a systematic analysis of the ability of
NMR data to map the conformational landscape of disordered
proteins, identifying combinations of RDCs and CSs that can
be used to raise conformational degeneracies inherent to the
different data types.286

Conformationally biased disordered ensembles of a model
protein were generated using the f lexible-meccano algorithm so
that three different regions of the protein obeyed specific
sampling properties (enhanced αR, βS, and βP as compared to
statistical coil). Synthetic, noise modulated, RDC, and CS data
were simulated from these ensembles and used as target data
for the ASTEROIDS algorithm, with subensembles selected
from a prior distribution of 20 000 structures calculated using
the statistical coil model. The results (Figure 14) identify
conformational propensities that can be distinguished on the
basis of experimentally available data. As was already predicted
in Figure 3, although available backbone 13C chemical shifts can
be used to accurately measure the populations of βS and αR
regions of Ramachandran space, the βP region is degenerate
with average values predicted for random statistical coil
sampling as well as a peripheral region to αR. Although
prediction accuracy is lower 15N and 1HN shifts raise this
degeneracy. Similarly, even combinations of multiple com-
monly measured RDCs (N−HN, C′−HN, C′−Cα, Cα−Hα) are
unable to distinguish between βS and βP regions, while the
extended regions can be distinguished from helical bias.
Importantly, however, the combination of backbone 13C (and
15N and 1HN) CSs and 1DHN RDCs raises both of these
inherent degeneracies, and represents a tractable solution that is

accessible for many experimental studies, while remaining
robust with respect to experimental noise, spectral calibration,
and prediction error. This study of the ability of NMR data to
map conformational potentials provides an essential calibration
for the f lexible-meccano/ASTEROIDS approach. Although
alternative algorithms will likely differ slightly in the detail of
the discrimination of conformational space from experimental
data, these differences are not expected to be major.

3.7. Application to IDPs Involved in Neurodegenerative
Disease − Tau and α-Synuclein

This calibrated approach was recently applied to a number of
experimental systems, including to the study of three constructs
of increasing length of the protein Tau, an IDP that is
implicated in the development of Alzheimer’s disease. Initially,
local conformational sampling of the 130 amino-acid K18
domain, which contains four highly homologous repeat
sequences, was analyzed using 13Cα, 13Cβ, 13C′, 15N, and 1HN

CSs and 1DHN RDCs,111,286,297 and the longer form (K32),298

containing 198 amino acids stretching from 200 to 397, using
additional 2DCHN and 4DHNiHαi−1 RDCs. K32 encompasses K18,
as well as the second proline-rich region (PRR; residues 198−
244),299 whose structural propensities are particularly interest-
ing as this region is targeted by kinases and involved in
assembly of tubulin into microtubuli.300 Local conformational
sampling can be represented in terms of free-energy maps of
each Ramachandran plot (Figure 15), or more accessibly in
terms of populations of the four main regions of Ramachandran
space presented in Figure 2. Comparison with the populations
of these regions taken from the initial pool reveals whether the

Figure 18. Analysis of long-range interactions in selected ASTEROIDS ensembles of Tau protein. (A, left) Contact map derived from selected
ASTEROIDS ensembles of wild-type Tau on the basis of experimental PREs (see Figure 16, left panel) showing a transient long-range contact
between the N-terminus of Tau and the proline-rich region. (A, right) Contact map derived from selected ASTEROIDS ensemble of
pseudophosphorylated Tau (S199E, S202E, T205E, T231E, S396E, S404E) on the basis of PRE data showing a release of long-range interactions as
compared to wild-type Tau. (B) Cross-validation of a single PRE data set (C322) for wild-type Tau. Gray bars indicate the experimental data, while
the different colors represent the calculated data from eight independent runs of the ASTEROIDS algorithm for ensembles comprising 200
structures. The selected ensembles reproduce the “passive” data as well as when these data are used actively in the ensemble selection, indicating that
an ensemble size of 200 conformers is suitable and that the approach is not significantly prone to overfitting. Reprinted in part with permission from
ref 301. Copyright 2011 American Chemical Society.
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experimental selections provide evidence for systematic and
significant deviation from the statistical coil model. The
presence of type I β-turns (populated between 15% and 25%
over the four repeat domains) is clearly identified. This
conformational sampling is very similar to that predicted by
AMD simulation in a previous study.111 Continuous stretches
of enhanced population of βP are also observed in the strands
comprising residues (256−261), (275−282), (307−313), and
(338−346), the central two of which mediate binding to
microtubules and have been identified as aggregation
nucleation sites important for the formation of Tau oligomers

and fibrils. Perhaps not surprisingly, the levels of βP sampling in
the PRR were up to 20% higher than expected from the
statistical coil.
The study of the protein Tau was extended further by

combining NMR CSs (15N, 13C and 1HN), RDCs (1DHN), and
PREs from 12 cysteine mutants, and SAXS data, to develop an
ensemble description of the full length Tau protein (441 amino
acids in length).298 Ensemble selection of such a large protein is
challenging. The volume of experimental data available for such
a large molecule comprises more than 2500 PRE-derived peak
intensity ratios, more than 2000 chemical shifts, SAXS data, as

Figure 19. Structural ensemble description of α-synuclein from experimental CSs, RDCs, PREs, and SAXS data. (A) Populations in the four regions
of Ramachandran space defined in Figure 2. The populations were derived from selected ASTEROIDS ensembles (blue, green, red and magenta)
and compared to the populations in the statistical coil library (black). (B) Comparison of experimental PREs (red) with those back-calculated from
selected ASTEROIDS ensemble (blue). (C) Comparison of experimental SAXS data (red) with the scattering curve calculated from the selected
ASTEROIDS ensemble (blue). The inset shows the distribution of the radius of gyration, Rg, in the selected ASTEROIDS ensembles employing
both PRE and SAXS data (blue) as compared to selected ensembles on the basis of PRE data only (red), and the statistical coil (black). (D)
Reproduction of experimental CSs (red) by the ASTEROIDS selected ensembles (blue). (E) Cross-validation of experimental 1DNH RDCs.
Comparison of experimental 1DNH RDCs (red) with RDCs back-calculated from selected ASTEROIDS ensemble using SAXS, PREs, and CSs only
(blue) and RDCs calculated for a statistical coil ensemble (dotted line). Reprinted in part with permission from ref 298. Copyright 2014 Cell Press.
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well as local and long-range RDC predictions, all of which are
calculated for each of 36 000 conformers present in the prior
sampling pool. The optimal number of structures was estimated
to be approximately 400, requiring averaging of around 107

simulated observables for each of 100 000 iterations of the
ASTEROIDS genetic algorithm.
The resulting data reproduction and local conformational

sampling are shown in Figures 16 and 17. Within the K32
region (198−394), sampling is essentially identical to that
observed independently from this domain, while helical regions
are observed in the C-terminal region and around residue 118.
Elevated populations of βP are again seen at specific regions in
the protein even in the absence of proline residues. The
ensemble also characterizes transient long-range order in Tau
protein from both PREs and SAXS between the N-terminus
and the proline-rich region22,301 that has also been identified
using EPR and FRET,302,303 and that has been shown, using
ASTEROIDS, to be abrogated in a pseudophosphorylated
mutated form of the protein where additional charges mimic

phosphorylation of S199, S202, T205, T212, S214, S396, and
S404 (Figure 18).301 The long-range contact plot also reveals
more extended sampling in the repeat domain of Tau as has
been seen previously from SAXS.304 This study also underlines
the complementary nature of SAXS and PRE data, which are
both required to correctly define the overall dimensions of the
ensemble, notably because only the SAXS data are
unambiguously sensitive to the more extended conformations.
ASTEROIDS was again applied to the protein α-synuclein

(Figure 19), this time combining 13Cα, 13Cβ, 13C′, 15N, and 1HN

CSs, 1DHN RDCs, SAXS, and four PRE data sets in a single
ensemble selection.298 According to the calibration study
described above, this combination is sufficient to unambigu-
ously distinguish populations of βP, βS, αR, and αL regions in
the resulting ensemble. The population of the βP region is
continuously elevated over residues 76−81, which forms the
central region of the nonamyloid-β component of the amyloid
plaque region, suggesting, in combination with the observations
from Tau, that the βP region may have some importance as an
intermediate for aggregation propensity.305 We note that the
resulting ensemble, which is in agreement with available NMR
and SAXS data, exhibited no evidence for large molecular
weight assemblies that have previously been evoked from
ensemble analysis.279

3.8. Cross-Validation: Testing the Predictive Capacity of
Ensemble Descriptions

Access to the large volumes of experimental data described
above provides the opportunity for rigorous testing of the
predictive nature of ASTEROIDS ensembles. In the case of
K32 2DCHN and 4DHNiHαi−1, RDCs and

15N and 1HN CSs were
independently removed from the target selection and their
values calculated from the selected ensembles (Figure 20).298 A
similar procedure was applied to N−HN RDCs from K18
(Figure 20), α-synuclein (Figure 19), Sendai virus NTAIL
(Figure 13), and full-length Tau protein (Figure 17). In total,
nine independent sets, five different types of RDC and CS
(1DHN,

2DCHN, and
4DHNiHαi−1 RDCs and 1HN and 15N CSs

from K18, K32, htau40, and αSyn) were predicted from
ASTEROIDS selections on the basis of the remaining NMR
data. The results demonstrate significant improvement in the
reproduction of independent data sets as compared to
prediction from statistical coil. In most cases, the improvement
increases when only regions exhibiting significantly different
conformational sampling are compared, providing quantifiable
evidence that the improvement does not result from fitting to
noise or poor conformational sampling. A recent study
proposed a different approach, whereby data were removed
from ensemble analysis and the effects on the physical
properties of the resultant ensembles were monitored.306 In
general, we believe that the use of such robust comparison
procedures will be essential for the development of credible
ensemble descriptions of highly disordered proteins.307

4. CONCLUSIONS

In this Review, we have attempted to describe recent advances
in the investigation of the free-energy surface explored by
intrinsically disordered proteins using NMR in combination
with other solution-state experimental techniques. In particular,
we have presented different approaches to the difficult
transformation of experimental data into valid conformational
distributions. In general, restrained MD-based approaches
combine experimental data with potential energy functions to

Figure 20. Cross-validation of the ASTEROIDS ensemble of the K32
construct of Tau. Reproduction of experimental data when not
included as active data in the ASTEROIDS target selection function.
(A) Experimental (red) and back-calculated (blue) 4DNH−Hα−1 RDCs
from selection using 13Cα, 13Cβ, 13C′, 1HN, and 15N CSs and 1DHN
RDCs. (B) Experimental (red) and back-calculated (blue) 2DHN−C′
RDCs from selection using 13Cα, 13Cβ, 13C′, 1HN, and 15N CSs and
1DHN RDCs. (C) Experimental (red) and back-calculated (blue) 15N
CSs from selection using 13Cα, 13Cβ, 13C′ CSs and 1DNH and 2DHN−C′
RDCs. (D) Experimental (red) and back-calculated (blue) 1HN CSs
from selection using 13Cα, 13Cβ, 13C′ CSs and 1DNH and 2DHNC′ RDCs.
(E) Experimental (red) and back-calculated (blue) 1DNH RDCs in K18
from selection using 13C Approα, 13Cβ, 13C′, 1HN, and 15N CSs.
Reprinted in part with permission from ref 298. Copyright 2014 Cell
Press.
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determine representative ensembles, while ensemble selection

approaches sample an unsupervised conformational space and

then attempt to delineate free-energy contours on the basis of

experimental data. The advantages and disadvantages of the

different approaches are not yet clear, so that both approaches

can gain insight from the other; for example, one could hope

that force fields appropriate for IDPs can be refined from

information derived from ensemble descriptions. In all cases, it

is clear that the highly under-determined conformational space

fundamental to IDPs requires the development of robust

validation procedures that can test the predictive nature of the

descriptions and to provide estimates of uncertainty and

statistical confidence in the ensemble descriptions.
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