The return of the rings: Evolutionary convergence of aromatic residues in the intrinsically disordered regions of RNA-binding proteins for liquid-liquid phase separation

Wen-Lin Ho ${ }^{\mathbf{1}} \quad$ | Jie-rong Huang ${ }^{1,2,3}$

${ }^{1}$ Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
${ }^{2}$ Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
${ }^{3}$ Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan

Correspondence

Jie-rong Huang, Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, No. 155 Section 2, Li-Nong Street, Taipei, Taiwan.
Email: jierongh@nycu.edu.tw

Funding information

The Ministry of Science and Technology of Taiwan, Grant/Award Numbers: 109-2113-M-010-003, 110-2113-M-A49A-504-MY3

Review editor: Nir Ben-Tal

Abstract

Aromatic residues appeared relatively late in the evolution of protein sequences to stabilize the globular proteins' folding core and are less in the intrinsically disordered regions (IDRs). Recent advances in protein liquidliquid phase separation (LLPS) studies have also shown that aromatic residues in IDRs often act as "stickers" to promote multivalent interactions in forming higher-order oligomers. To study how general these structure-promoting residues are in IDRs, we compared levels of sequence disorder in RNA binding proteins (RBPs), which are often found to undergo LLPS, and the human proteome. We found that aromatic residues appear more frequently than expected in the IDRs of RBPs and, through multiple sequence alignment analysis, those aromatic residues are often conserved among chordates. Using TDP-43, FUS, and some other well-studied LLPS proteins as examples, the conserved aromatic residues are important to their LLPS-related functions. These analyses suggest that aromatic residues may have contributed twice to evolution: stabilizing structured proteins and assembling biomolecular condensates.

KEYWORDS

biomolecular condensates, intrinsically disordered proteins, liquid-liquid phase separation, membraneless organelle, RNA-binding proteins

Amino acids with aromatic rings stabilize protein structure ${ }^{1}$ and are accordingly rare in intrinsically disordered regions (IDRs). ${ }^{2,3}$ Interestingly, however, aromatic residues in IDRs have recently been identified as being crucial in mediating liquid-liquid phase separation (LLPS). ${ }^{4-7}$ Here, through protein sequence analyses, we

[^0]outline how aromatic residues may have contributed twice to evolution.

How did proteins emerge on Earth? Eck and Dayhoff proposed that early polypeptides were short, with simple compositions, but extended constantly by duplicating their sequences. ${ }^{8}$ In their ferredoxin example, new amino acids appeared by mutation, and the addition of cysteine provided sulfide bonding to ferrous sulfide, a catalyst used as a primitive energy source. ${ }^{8}$ The more lately incorporated amino acids, including hydrophobic and aromatic residues, enhanced the folding stability of these polypeptides. ${ }^{1}$ These polypeptides, or proteins, became the main workhorses of early cells. When lifeforms became more complex with the appearance of eukaryotes

FIGURE 1 Prevalence of disorder and disorder odds ratios relative to the human proteome by amino acid type for RNA-binding proteins. (a) Proportion of proteins with disordered regions longer than 30, 40, or 50 consecutive residues, as predicted using different algorithms, in the human proteome (left column), RNA-binding proteins (middle column), and mRNA binding proteins (right column).
(b) Log-odds ratios relative to the human proteome of being in an intrinsically disordered region for amino acids in RNA binding proteins (RBPs) (left) and mRBPs (right). The dashed lines indicate the average value over all amino acid types. The dots represent the values obtained for randomly selected (negative control) subsamples ($N=1,542$ for RBPs and $N=689$ for mRBP, the same numbers as considered in the main analysis) of the human proteome
and multicellular organisms, proteins became more efficient and "moonlighted" in different functions. ${ }^{9}$ The acquisition of IDRs substantially enlarged their functional repertoire. ${ }^{10}$ Among many functional advantages, ${ }^{11}$ IDRs' tunable and reversible assembly, known as LLPS, has recently been recognized as the mechanism that drives the formation of membraneless organelles. ${ }^{12}$

The building blocks of proteins also appeared at different stages of evolution. Eck and Dayhoff found, for example, that the earliest four amino acids to appear were Ala, Asp, Ser, and Gly. ${ }^{8}$ Based on multiple criteria, ${ }^{13}$ the order of appearance of the amino acids in life is now accepted to be: Gly, Ala, Asp, Val, Pro, Ser, Glu, Leu/Thr, Arg, Ile/Gln/Asn, His, Lys, Cys, Phe, Tyr, Met, Trp. Interestingly, as many others have noticed, this suggests that the earliest peptides were disordered because the most primitive amino acids are not structurepromoting. ${ }^{14-16}$ These primitive disordered proteins may have initiated life on Earth and acquired aromatic residues later, thereby increasing their folding stability. The initial set of amino acids was implicated again in the evolution of IDRs for various functions, as these disordered regions were "reinvented." ${ }^{17}$ Although aromatic residues appear relatively late in protein evolution for stabilizing
the folding, they are also present in the molecular recognition features (often phenylalanine) in later evolved IDRs. ${ }^{18,19}$ More importantly, recent studies have shown that they are one of the driving forces of LLPS in the IDRs. ${ }^{4-7}$ Therefore, we would like to understand how general the appearance of "structure-promoting" amino acids is in unstructured regions.

We are particularly interested in RNA-binding proteins (RBPs) because the evidence is accumulating that their subcellular localization with RNA molecules is mediated by LLPS, ${ }^{20}$ and posttranscriptional gene control is dependent on RNA molecules being in precisely the right place at the right time. ${ }^{21,22}$ Accordingly, we analyzed a set of 1,542 RBPs, a subgroup of 692 mRNA binding proteins (mRBPs), and other types of RBPs from a census study, ${ }^{23}$ in comparison with a set of 20,396 human proteins. We collected protein sequences from the UniProt database ${ }^{24}$ and analyzed their level of disorder using the PONDR server's VLXT, VL3, and VSL2 algorithms. ${ }^{25,26}$ Although these algorithms predict different results for a single protein, the overall trend in a largescale analysis is similar (see analysis below and Figure S1). We separated residues into ordered and disordered based on the annotation of these algorithms, and calculated the percentage of proteins with sequences of
consecutive disordered residues longer than 30,40 , and 50 amino acids (Figure 1a; Table S1). Our analysis for the human proteome is similar to a classic study of eukaryotic organisms ${ }^{27}$ and agrees with the observation that IDRs are more prevalent in RBPs. ${ }^{28,29}$ Our results also show that mRBPs have an even higher proportion of disordered residues (Figure 1a), with ~ 10 percentage points (pp) more residues than human proteins in consecutive sequences of 20 or more disordered residues, and $\sim 20 \mathrm{pp}$ more residues found in disordered regions longer than 60 amino acids (Table S1), suggesting that the mRBPs tend to have longer IDRs. We also analyzed the subgroups of the other types of RBPs. Our results agree with a recent analysis that mRNA, rRNA, and snRNA binding proteins have a higher portion of disordered regions ${ }^{30}$ (Figure S2).

Next, we counted the numbers of each amino-acid type in the predicted disordered or folded domains (Tables S2-S4). For each amino acid, we calculated the log-odds ratio relative to the human proteome of occurring in a disordered region in RBPs or mRBPs (Figure 1b):

The values obtained are positive for all amino acids (except for cysteine with the VL3 and VSL2 algorithms; Figure 1b), and the average values (dashed lines in Figure 1b) confirm the above conclusion that IDRs are more prevalent in RBPs than in the human proteome. We also repeated the analysis 1,000 times for random selections of 1,542 or 692 proteins sequences (the numbers of RBPs and mRPBP sequences considered) from the human proteome. The averaged log-odds ratios obtained for the random selections are around zero with standard deviations of mostly less than 0.05 and largest deviations no greater than ± 0.1 (dots in Figure 1b; Tables S5-S7 and Figure S3). This analysis of random selections indicates that the differences for RBPs and mRBPs (bars in Figure 1b) are significant. We also analyzed the other types of RBPs using the same approach, but the deviation of single amino-acid types is not obvious compared to the random distribution (Figure S2).

The results from the different algorithms for each amino acid are consistent, except for cysteine. VL3 and VSL2 predict that the prevalence of cysteines in IDRs is lower in RBPs and mRBPs than in the human proteome, whereas VLXT predicts the opposite, but similar to the range of results of random selection. Although this may reflect the algorithm's use of different scoring functions,
it is also possible that IDRs in human proteins have a higher portion of cysteines than those in RBPs do. Note also that asparagine is slightly more likely to be disordered in RBPs and mRBPs, whereas for glutamine, the difference is similar to those obtained for the randomly selected pools (Figure 1b). Although it has been reported that the IDRs in RBPs are likely to be prion-like, that is, rich in asparagine and glutamine, ${ }^{7}$ these two amino acids are not obviously more prevalent than in the human proteome. Among all amino acids, the most considerable differences obtained with these three algorithms are for phenylalanine, tryptophan, and tyrosine, with values much higher than those obtained for random samples of human proteins, particularly for mRNA targeting proteins (Figure 1b). In other words, structure-promoting aromatic amino acids are relatively more abundant in disordered regions of RBPs than in the human proteome in general.

Functionally important residues are conserved during evolution. ${ }^{31}$ Therefore, we aligned orthologue sequences for each RBP and calculated the Jensen-Shannon divergence score of each residue ${ }^{31}$ as a measure of sequence conservation (Figure 2; Methods in Supporting Information S1). The level of conservation is lower in the chordate phylum (dark blue lines in Figure 2) than in mammals (light blue lines). The analysis was repeated (gray lines) for vertebrates (subphylum) and tetrapods (superclass). As expected, folded domains are conserved earlier in evolution than disordered regions, as indicated by that the dark blue lines have lower values in the regions underlined with a red bar (sequences of more than 40 consecutive disordered residues). We also calculated the average level of conservation for each amino acid to investigate individual trends. The trends are generally flat for structured domains, indicating early conservation (examples in Figure S4). On the contrary, although increasing trends are observed for most amino acids in the IDRs, the aromatic residues are relatively flat, as observed for residues in structured domains (bottom panels in Figure 2 and Figure S4).

In TDP-43, for example, one of the most extensively studied RBP undergoing LLPS, ${ }^{32-35}$ the aromatic residues in its IDRs are highly conserved (Figure 2a; the orange/ purple/yellow circles on the Chordata line respectively indicate Phe/Trp/Tyr). The three tryptophans known to be key residues in driving LLPS ${ }^{4}$ are conserved in all chordates. The phenylalanines are conserved in chordates but to a lesser extent, in keeping with the fact that they contribute less to LLPS. ${ }^{4}$ This interpretation that sequence conservation reflects functional importance is further supported by the fact that the transient α-helical region in TDP-43's IDR (Figure 2a, ~residues 320-340), which is involved in LLPS ${ }^{32,36,37}$ is also conserved.

FIGURE 2 Sequence conservation in example proteins with highly conserved aromatic residues. (a) TDP-43, (b) FUS, NUP153, and TNRC6A. (Upper panels) Levels of sequence conservation are quantified by the Jensen-Shannon divergence score ${ }^{31}$ and normalized using the Z-score function (the mean of all values toward chordates is 0 ; the value in the y-axes is the standard deviation, positive values mean more conserved.). Levels of conservation in chordates (dark blue), vertebrates (gray), tetrapods (gray), and mammals (light blue), plotted versus the corresponding residue number in the human sequence. Predicted disordered regions longer than 40 residues are indicated with red bars. Aromatic residues are labeled on the chordate line: Phe (orange), Trp (purple), Tyr (yellow). (a) The three arrows indicate tryptophans experimentally identified as being crucial to liquid-liquid phase separation; the transient α-helical region that also contributes to self-assembly is also labeled. (b) The colored horizontal curly brackets indicate highly conserved aromatic-residue-rich regions. (Lower panels) Average levels of conservation as a function of decreasing taxonomic rank for amino-acid types in regions predicted to be disordered (indicated by red bars in the upper panel)

Many other RBPs have highly conserved aromatic residues whose functional importance have been reported (Figure 2b): Tyrosines are known to be involved in the LLPS of the N -terminal domain of the RBP FUS, ${ }^{5,7,38}$ and a recent analysis of mammalian FUS proteins found the same trend as observed here. ${ }^{39}$ Phe-Gly repeats are a
common feature of nucleoporins, which regulate nucleocytoplasmic transport in the nuclear pore complex. ${ }^{40-42}$ The nucleoporin NUP153 is also categorized as an RBP because its Phe-Gly repeats mediate mRNA trafficking. ${ }^{43}$ Phenylalanines are conserved in NUP153 (Figure 2b) and it is reasonable to suppose that
this is also the case in other nucleoporins with many Phe-Gly repeats. The tryptophan-rich region in TNRC6 interacts with Ago2 to promote the miRNA-induced silencing complex's phase separation ${ }^{44}$; most of these tryptophans are highly conserved in chordates (Figure 2b). Other examples include the LLPS of CPEB ${ }^{45}$ and HNRNPD. ${ }^{46}$ Although the role of aromatic residues has not been explicitly studied in these proteins, their conservation in chordates hints at a possible role in LLPS related functions (Figure S5). Many RBPs that have not been reported to undergo LLPS also have conserved aromatic patterns, including RBM19, DDX18, KHDRBS1, ABT1, RSL24D1, SMAD5, and TAF9 (Figures S4b and S5). We suggest that these conserved aromatic residues in IDRs may also be involved in LLPS-related functions. However, multiple sequence alignment is limited in identifying the conserved residues in many other IDRs via current algorithms. The analysis above thus underestimates the numbers of RBPs having functionally important aromatic residues. These "unalignable" aromatic residues, however, may also be functionally important. For example, recent studies have shown that aromatic residues' amount and patterning are the keys for hnRNP-A1's LLPS regardless of its orthologs' IDRs cannot be aligned. ${ }^{47}$ Moreover, the "spacers" between the stickers are also essential factors in driving LLPS, ${ }^{47,48}$ and current sequence alignment algorithms for IDRs cannot easily pick the importance of spacers as well. Although a recent work using machine learning approaches to collect the "features" of IDRs might be an alternative approach to find their traits, ${ }^{49}$ it is still limited in capturing the distal interaction, such as the prevailing aromatic residues.

In summary, IDRs appeared late in proteins, and RBPs evolved under selective pressure to assemble precisely in specific cellular locations. This spatiotemporal control can be achieved by mimicking prion properties ${ }^{50}$ or by having short α-helical motifs, ${ }^{32}$ blocked charged-pattern, ${ }^{51}$ or coiled-coil domains, ${ }^{52}$ features that provide multivalency and promote the formation of higher-order oligomers. Aromatic residues, with weak $\pi-\pi$ or cation $-\pi$ interactions, appear to have been selected in this role, affording the weak, reversible interactions required for biomolecular condensate formation. After contributing a first time in the evolution of folded proteins, the subsequent return of the (aromatic) rings in RBPs appears to have been crucial to the emergence of LLPS.

ACKNOWLEDGMENTS

This research was funded by the Ministry of Science and Technology of Taiwan, grant numbers 109-2113-M-010-003 and 110-2113-M-A49A-504-MY3.

AUTHOR CONTRIBUTIONS

Wen-Lin Ho: Data curation (lead); formal analysis (lead); investigation (equal); methodology (equal); software (lead); visualization (equal); writing - review and editing (supporting). Jie-rong Huang: Conceptualization (lead); formal analysis (equal); funding acquisition (lead); investigation (equal); methodology (equal); project administration (lead); resources (lead); software (supporting); supervision (lead); validation (equal); visualization (equal); writing - original draft (lead); writing review and editing (lead).

DATA AVAILABILITY STATEMENT

All scripts and data generated or analyzed is this study are available in the repository: http://github.com/ allmwh/the_return_of_the_rings.

ORCID

Jie-rong Huang (D) https://orcid.org/0000-0003-3674-2228

REFERENCES

1. Burley SK, Petsko GA. Aromatic-aromatic interaction: A mechanism of protein structure stabilization. Science. 1985;229: 23-28.
2. Dunker AK, Lawson JD, Brown CJ, et al. Intrinsically disordered protein. J Mol Graph Model. 2001;19:26-59.
3. Yan J, Cheng J, Kurgan L, Uversky VN. Structural and functional analysis of "non-smelly" proteins. Cell Mol Life Sci. 2020;77:2423-2440.
4. Li HR, Chiang WC, Chou PC, Wang WJ, Huang JR. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol Chem. 2018;293:6090-6098.
5. Lin Y, Currie SL, Rosen MK. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem. 2017;292:19110-19120.
6. Kwon I, Kato M, Xiang S, et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of lowcomplexity domains. Cell. 2013;155:1049-1060.
7. Wang J, Choi JM, Holehouse AS, et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell. 2018;174:688-699.e16.
8. Eck RV, Dayhoff MO. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science. 1966;152:363-366.
9. Jeffery CJ. Moonlighting proteins. Trends Biochem Sci. 1999; 24:8-11.
10. Oldfield CJ, Dunker AK. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem. 2014;83:553-584.
11. Smock RG, Gierasch LM. Sending signals dynamically. Science. 2009;324:198-203.
12. Alberti S, Hyman AA. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol. 2021;22:196-213.
13. Trifonov EN. The triplet code from first principles. J Biomol Struct Dyn. 2004;22:1-11.
14. Katsnelson A. Did disordered proteins help launch life on earth? ACS Cent Sci. 2020;6:1854-1857.
15. Kulkarni P, Uversky VN. Intrinsically disordered proteins: The dark horse of the dark proteome. Proteomics. 2018;18: e1800061.
16. Zhu H, Sepulveda E, Hartmann MD, et al. Origin of a folded repeat protein from an intrinsically disordered ancestor. Elife. 2016;5:e16761.
17. Uversky VN. A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Sci. 2013;22:693-724.
18. Mohan A, Oldfield CJ, Radivojac P, et al. Analysis of molecular recognition features (MoRFs). J Mol Biol. 2006;362:1043-1059.
19. Vacic V, Oldfield CJ, Mohan A, et al. Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res. 2007;6:2351-2366.
20. Wiedner HJ, Giudice J. It's not just a phase: Function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol. 2021;28:465-473.
21. Kloc M, Zearfoss NR, Etkin LD. Mechanisms of subcellular mRNA localization. Cell. 2002;108:533-544.
22. Martin KC, Ephrussi A. mRNA localization: Gene expression in the spatial dimension. Cell. 2009;136:719-730.
23. Gerstberger S, Hafner M, Tuschl T. A census of human RNAbinding proteins. Nat Rev Genet. 2014;15:829-845.
24. UniProt C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506-D515.
25. Romero O, Dunker K. Sequence data analysis for long disordered regions prediction in the calcineurin family. Genome Inform Ser Workshop Genome Inform. 1997;8:110-124.
26. Radivojac P, Obradovic Z, Brown CJ, Dunker AK. Prediction of boundaries between intrinsically ordered and disordered protein regions. Pac Symp Biocomput. 2003;216-227.
27. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform. 2000;11:161-171.
28. Zagrovic B, Bartonek L, Polyansky AA. RNA-protein interactions in an unstructured context. FEBS Lett. 2018;592:29012916.
29. Varadi M, Zsolyomi F, Guharoy M, Tompa P. Functional advantages of conserved intrinsic disorder in RNA-binding proteins. PLoS One. 2015;10:e0139731.
30. Zhao B, Katuwawala A, Oldfield CJ, et al. Intrinsic disorder in human RNA-binding proteins. J Mol Biol. 2021;433:167229.
31. Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007;23:18751882.
32. Conicella AE, Zerze GH, Mittal J, Fawzi NL. ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure. 2016;24:1537-1549.
33. McGurk L, Gomes E, Guo L, et al. Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol Cell. 2018;71: 703-717.e9.
34. Babinchak WM, Haider R, Dumm BK, et al. The role of liquidliquid phase separation in aggregation of the TDP-43 lowcomplexity domain. J Biol Chem. 2019;294:6306-6317.
35. Sun Y, Medina Cruz A, Hadley KC, et al. Physiologically important electrolytes as regulators of TDP-43 aggregation and droplet-phase behavior. Biochemistry. 2019;58:590-607.
36. Li HR, Chen TC, Hsiao CL, Shi L, Chou CY, Huang JR. The physical forces mediating self-association and phase-separation in the C-terminal domain of TDP-43. Biochim Biophys Acta. 2018;1866:214-223.
37. Chen TC, Hsiao CL, Huang SJ, Huang JR. The nearestneighbor effect on random-coil NMR chemical shifts demonstrated using a low-complexity amino-acid sequence. Protein Pept Lett. 2016;23:967-975.
38. Qamar S, Wang GZ, Randle SJ, et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation $-\pi$ interactions. Cell. 2018;173:720-734 e15.
39. Dasmeh P, Wagner A. Natural selection on the phaseseparation properties of FUS during 160 my of mammalian evolution. Mol Biol Evol. 2021;38:940-951.
40. Milles S, Mercadante D, Aramburu IV, et al. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell. 2015;163:734-745.
41. Onischenko E, Tang JH, Andersen KR, et al. Natively unfolded FG repeats stabilize the structure of the nuclear pore complex. Cell. 2017;171:904-917.e19.
42. Hayama R, Sparks S, Hecht LM, et al. Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex. J Biol Chem. 2018;293:4555-4563.
43. Bastos R, Lin A, Enarson M, Burke B. Targeting and function in mRNA export of nuclear pore complex protein Nup153. J Cell Biol. 1996;134:1141-1156.
44. Sheu-Gruttadauria J, MacRae IJ. Phase transitions in the assembly and function of human miRISC. Cell. 2018;173:946957.e16.
45. Ford L, Ling E, Kandel ER, Fioriti L. CPEB3 inhibits translation of mRNA targets by localizing them to P bodies. Proc Natl Acad Sci USA. 2019;116:18078-18087.
46. Batlle C, Yang P, Coughlin M, et al. hnRNPDL phase separation is regulated by alternative splicing and disease-causing mutations accelerate its aggregation. Cell Rep. 2020;30:11171128.e5.
47. Martin EW, Holehouse AS, Peran I, et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science. 2020;367:694-699.
48. Dasmeh P, Doronin R, Wagner A. The length scale of multivalent interactions is evolutionarily conserved in fungal and vertebrate phase-separating proteins. Genetics. 2022.220, iyab184. https://academic.oup.com/genetics/article/220/1/iyab184/ 6410649
49. Lu AX, Lu AX, Pritišanac P, Zarin T, Forman-Kay JD, Moses AM. Discovering molecular features of intrinsically disordered regions by using evolution for contrastive learning. bioRxiv. 2021. https://doi.org/10.1101/2021.07.29.454330
50. Patel A, Lee HO, Jawerth L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015;162:1066-1077.
51. Greig JA, Nguyen TA, Lee M, et al. Arginine-enriched mixedcharge domains provide cohesion for nuclear speckle condensation. Mol Cell. 2020;77:1237-1250.e4.
52. Fang X, Wang L, Ishikawa R, et al. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature. 2019;569:265-269.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: Ho W-L, Huang J. The return of the rings: Evolutionary convergence of aromatic residues in the intrinsically disordered regions of RNA-binding proteins for liquid-liquid phase separation. Protein Science. 2022;31(5): e4317. https://doi.org/10.1002/pro. 4317

The return of the rings: evolutionary convergence of aromatic residues in the intrinsically disordered regions of RNA-binding proteins for liquid-liquid phase separation

Wen-Lin Ho and Jie-rong Huang

Methods

Disorder prevalence and disorder odds ratios relative to the human proteome
All human protein sequences were retrieved from UniProt (UniProtKB_2021_01, download date: 2021/02/06, 20396 sequences in total). Disorder predictions were performed using the VLXT, VL3, and VSL2 algorithms on the PONDR webserver ${ }^{1,2}$ and flDPnn. ${ }^{3}$ According to these algorithms, each residue in a sequence was annotated as ordered or disordered. The criteria of consecutive disordered regions (longer than 30, 40 , or 50 residues) or the type of amino acids within these regions were analyzed using in-house scripts (deposited in GitHub). RNA-binding proteins were based on the definition of the consensus studies. ${ }^{4}$ Sub-groups of RNA-binding proteins, targeting to mRNA, irRNA, tRNA, rRNA, ncRNA, snRNA, are defined based on the same study (the nomenclature follows the recent analysis ${ }^{5}$). Names of these RBPs and sequences used in this analysis are in an Excel file in the extended datasets. Nine gene names in the census study are not inconsistent with the UniProt and thus were not analyzed (also indicated in the Excel file). Missing these sequences does not affect our analysis.

Sequence conservation analysis

Human RBP orthologues were obtained from the Orthologous Matrix (OMA) database ${ }^{6}$ using the human protein's UniProt ID as input to grep its OMA group members. The orthologues were filtered by taxonomy. The sequences of the orthologues were aligned using the Clustal Omega (v.1.2.4) ${ }^{7}$ module in Biopython ${ }^{8}$. The aligned sequence with a gap longer than 20 consecutive residues will be removed unless more than three orthologs in the alignment have the same gap. The aligned sequences were mapped to the human sequence's residue number, and the level of conservation of each residue was quantified using the Jensen-Shannon divergence score $\left(D^{\mathrm{JS}}\right)^{9}$:

$$
D^{\mathrm{JS}}=\frac{1}{2} \sum_{\alpha \in \mathrm{a} . \mathrm{a}} p_{\mathrm{C}}(\alpha) \log _{2} \frac{p_{\mathrm{C}}(\alpha)}{r(\alpha)}+\frac{1}{2} \sum_{\alpha \in \mathrm{a.a}} q(\alpha) \log _{2} \frac{q(\alpha)}{r(\alpha)}
$$

where α is one of the twenty amino acids (a.a.), $p_{\mathrm{C}}(\alpha)$ is the column population of amino-acid $\alpha, q(\alpha)$ is the background distribution in the BLOSUM62 alignment, $r(\alpha)$ $=0.5 p_{C}(\alpha)+0.5 q(\alpha)$. The orthologs used for the analysis in Figure 2 and Figure S5 are listed in Table S8 or deposited the Github server. The Jensen-Shannon divergence scores were converted using the Z-score function. The mean and standard deviation derived from the chordates were used for normalization.

Figure S1. The analysis is independent of the algorithms chosen or the length criteria.
One of the latest IDP predictors, flDPnn ${ }^{3}$, which shows good performance ${ }^{10}$ is included for comparison. (a) Examples of using different algorithms: three from the PONDR server (left) and flDPnn (right) on a single protein (TDP-43). (b) Compared to Figure 1, using other algorithms such as the latest flDPnn or (c) analyzed with criteria of consecutive lengths (in this example, ≥ 40 residues). The overall trends are similar.

Figure S2. Prevalence of disorder and disorder odds ratios relative to the human proteome by amino acid type for different RNA-binding proteins. (a) The proportion of proteins with disordered regions longer than 30,40 , or 50 consecutive residues, as predicted using different algorithms, in the human proteome (upper panel) and other six groups of protein targeting to different types of RNAs based on the census study. ${ }^{5}$ (b) Log-odds ratios relative to the human proteome of being in an IDR for amino acids in different types of RNA targeting proteins. The dots represent the values obtained for randomly selected (negative control) subsamples of the human proteome. The number of random sample sizes depends on the RBPs' number in the census data, ${ }^{4}$ as indicated.

Figure S3. Distribution of the log-odds ratio relative to the human proteome of being in an intrinsically disordered region as predicted by the (a) VLXT, (b) VL3, and (c) VSL2 algorithm for randomly selected subgroups of the human proteome (left, N $=1542$; right, $\mathrm{N}=689$)
(a)

(b)

RSL24D1

SMAD5

TAF9

Figure S4. Average level of sequence conservation by amino acid type for residues in ordered (purple) or disordered regions (white) as a function of decreasing taxonomic ranks (Chordata, Vertebrata, Tetrapoda, Mammalia), for (a) the example proteins presented in fig. 2 of the main text and (b) the example proteins presented in figure S3 (below). Only residues in disordered (ordered) regions longer than 40 (10) consecutive amino acids were considered.

Figure S5. Sequence conservation in example proteins with highly conserved aromatic residues. Levels of sequence conservation are quantified by the Jensen-Shannon divergence score and normalized using the Z -score function (the mean of all values toward chordates is 0 ; the value in the y-axes is the standard deviation; positive values mean more conserved.) Levels of conservation in chordates (dark blue), vertebrates (gray), tetrapods (gray), and mammals (light blue) are plotted versus the corresponding residue number in the human sequence. Predicted disordered regions longer than 40 residues are indicated with red bars. Aromatic residues are labeled on the chordate line: Phe (orange), Trp (purple), Tyr (yellow).

Table S1. Proportions of proteins with predicted IDRs longer than certain lengths.

Algorithm	Length longer than	Human proteins (\%)	RNA binding proteins (\%)	(RBP - Human) (\%)	mRNA binding proteins (\%)	(mRBP- Human) (\%)
VLXT	20	81.8	92.6	10.9	93.6	11.8
	30	65.6	79.5	13.9	84.5	18.9
	40	52.0	66.2	14.2	73.0	21.0
	50	41.7	54.7	12.9	62.6	20.8
	60	33.7	45.9	12.2	55.4	21.7
VL3	20	83.3	93.4	10.1	93.9	10.6
	30	76.3	88.0	11.7	90.1	13.8
	40	68.5	80.9	12.4	84.3	15.8
	50	61.6	74.4	12.8	79.7	18.1
	60	55.7	66.6	10.9	74.2	18.5
VSL2	20	84.1	91.8	7.7	93.9	9.8
	30	76.5	85.3	8.8	88.4	11.9
	40	68.9	78.1	9.2	82.6	13.7
	50	61.5	71.2	9.7	78.7	17.1
	60	55.6	64.3	8.7	73.4	17.7

Table S2. Number of residues predicted to be in ordered/disordered regions by the VLXT algorithm

	RBPs		mRBPs		Human proteins	
	Ordered	Disordered	Ordered	Disordered	Ordered	Disordered
A	33767	27760	15945	14705	474415	321897
C	12353	2662	5358	1244	220009	41333
D	27224	18481	13262	9798	349268	188768
E	31856	36215	15343	18489	409580	396968
F	25340	4883	12221	2586	362796	51625
G	32066	26379	15778	15089	452912	293467
H	15438	6544	6995	3577	220858	76954
I	26308	11070	12352	5838	369522	123116
K	34806	26359	16136	12385	417435	233546
L	54425	25927	24430	12995	802230	329184
M	10887	8169	5332	4419	151790	90374
N	21112	11254	10520	6336	287931	119746
P	25046	31437	11796	18099	341273	375933
Q	25311	18377	12474	10261	330112	211467
R	26230	30610	12211	16772	347223	292901
S	34805	36396	16745	21500	529363	416555
T	26013	17415	12199	9710	388457	219237
V	34359	17768	15600	9331	474983	202342
W	6853	2006	2992	1062	114749	23332
Y	18116	5406	8934	3333	251740	50805

Table S3. Number of residues predicted to be in ordered/disordered regions by the VL3 algorithm

	RBPs		mRBPs		Human proteins	
	Ordered	Disordered	Ordered	Disordered	Ordered	Disordered
A	34295	27232	16011	14639	479203	317109
C	10891	4124	4765	1837	175643	85699
D	25476	20229	11988	11072	330080	207956
E	31199	36872	14727	19105	399940	406608
F	22220	8003	10423	4384	324013	90408
G	29712	28733	13694	17173	431350	315029
H	13748	8234	6048	4524	191475	106337
I	27452	9926	12931	5259	378838	113800
K	30335	30830	13731	14790	360043	290938
L	53010	27342	23653	13772	771505	359909
M	11504	7552	5595	4156	159982	82182
N	19550	12816	9461	7395	274701	132976
P	23244	33239	10572	19323	320476	396730
Q	22870	20818	10930	11805	295531	246048
R	27151	29689	12085	16898	355342	284782
S	31099	40102	14545	23700	477217	468701
T	25201	18227	11733	10176	370569	237125
V	34809	17318	15676	9255	478562	198763
W	6619	2240	2768	1286	113612	24469
Y	16578	6944	7858	4409	238289	64256

Table S4. Number of residues predicted to be in ordered/disordered regions by the VLS2 algorithm

	RBPs		mRBPs		Human proteins	
	Ordered	Disordered	Ordered	Disordered	Ordered	Disordered
A	30642	30885	13975	16675	429548	366764
C	11246	3769	4884	1718	178491	82851
D	22064	23641	10146	12914	281602	256434
E	26089	41982	12175	21657	326165	480383
F	21578	8645	10046	4761	313891	100530
G	25897	32548	11723	19144	374088	372291
H	12557	9425	5427	5145	170785	127027
I	27085	10293	12597	5593	370211	122427
K	25112	36053	11275	17246	290910	360071
L	52104	28248	22962	14463	750188	381226
M	10076	8980	4834	4917	138373	103791
N	16953	15413	7988	8868	237124	170553
P	19526	36957	8703	21192	263731	453475
Q	19952	23736	9358	13377	255138	286441
R	24648	32192	10737	18246	314028	326096
S	24465	46736	11073	27172	373370	572548
T	22428	21000	10245	11664	328426	279268
V	34945	17182	15635	9296	473431	203894
W	6355	2504	2622	1432	108987	29094
Y	15972	7550	7451	4816	228179	74366

Table S5. Summary statistics for the log-odds ratios relative to the human proteome of being in a disordered region as predicted by the VXLT algorithm for randomly sampled subgroups of the human proteome

	Random sample size $=1542$			Random sample size $=689$				
	mean	std	\max	min	mean	std	max	min
A	0.00	0.02	0.05	-0.05	0.00	0.03	0.08	-0.09
C	0.00	0.03	0.10	-0.09	0.00	0.05	0.15	-0.15
D	0.00	0.02	0.08	-0.06	0.00	0.03	0.09	-0.11
E	0.00	0.01	0.04	-0.05	0.00	0.02	0.07	-0.08
F	0.00	0.03	0.08	-0.08	0.00	0.04	0.12	-0.13
G	0.00	0.02	0.08	-0.07	0.00	0.04	0.13	-0.12
H	0.00	0.03	0.08	-0.08	0.00	0.04	0.18	-0.13
I	0.00	0.02	0.08	-0.06	0.00	0.04	0.13	-0.10
K	0.00	0.02	0.06	-0.06	0.00	0.03	0.09	-0.10
L	0.00	0.02	0.06	-0.07	0.00	0.03	0.10	-0.11
M	0.00	0.02	0.08	-0.06	0.00	0.03	0.11	-0.08
N	0.00	0.02	0.07	-0.07	0.00	0.03	0.11	-0.13
P	0.00	0.02	0.06	-0.05	0.00	0.03	0.10	-0.09
Q	0.00	0.02	0.07	-0.06	0.00	0.03	0.09	-0.12
R	0.00	0.02	0.05	-0.06	0.00	0.02	0.09	-0.08
S	0.00	0.02	0.07	-0.06	0.00	0.03	0.11	-0.11
T	0.00	0.04	0.16	-0.09	0.00	0.06	0.22	-0.14
V	0.00	0.02	0.06	-0.07	0.00	0.03	0.09	-0.11
W	0.00	0.03	0.12	-0.13	0.00	0.05	0.15	-0.13
Y	0.00	0.03	0.09	-0.08	0.00	0.04	0.13	-0.12

The values are derived from 1000 randomly selected subgroups of the human proteome with sample sizes of 1542 or 689 (the same as those of the samples of RBPs and mRBPs considered) using eq. (1). The mean, standard deviation (std), maximum (max), and minimum (min) values are listed.

Table S6. Summary statistics for the log-odds ratios relative to the human proteome of being in a disordered region as predicted by the VL3 algorithm for randomly sampled subgroups of the human proteome

	Random sample size $=1542$			Random sample size $=689$				
	mean	std	\max	\min	mean	std	\max	min
A	0.00	0.03	0.08	-0.08	0.00	0.04	0.11	-0.13
C	0.00	0.04	0.11	-0.10	0.00	0.06	0.17	-0.19
D	0.00	0.03	0.10	-0.08	0.00	0.04	0.11	-0.17
E	0.00	0.02	0.06	-0.07	0.00	0.03	0.10	-0.11
F	0.00	0.04	0.14	-0.12	0.00	0.05	0.14	-0.17
G	0.00	0.03	0.12	-0.11	0.00	0.04	0.10	-0.16
H	0.00	0.03	0.10	-0.10	0.00	0.05	0.13	-0.19
I	0.00	0.04	0.14	-0.12	0.00	0.06	0.17	-0.19
K	0.00	0.03	0.08	-0.07	0.00	0.04	0.11	-0.14
L	0.00	0.03	0.10	-0.08	0.00	0.05	0.14	-0.14
M	0.00	0.03	0.09	-0.09	0.00	0.05	0.14	-0.17
N	0.00	0.03	0.09	-0.09	0.00	0.05	0.14	-0.18
P	0.00	0.02	0.06	-0.06	0.00	0.03	0.09	-0.11
Q	0.00	0.02	0.08	-0.07	0.00	0.04	0.13	-0.13
R	0.00	0.02	0.07	-0.09	0.00	0.04	0.10	-0.13
S	0.00	0.03	0.08	-0.07	0.00	0.04	0.12	-0.13
T	0.00	0.04	0.14	-0.11	-0.01	0.06	0.21	-0.19
V	0.00	0.03	0.12	-0.10	0.00	0.05	0.13	-0.17
W	0.00	0.04	0.16	-0.12	0.00	0.07	0.20	-0.23
Y	0.00	0.04	0.12	-0.12	0.00	0.06	0.16	-0.21

The values are derived from 1000 randomly selected subgroups of the human proteome with sample sizes of 1542 or 689 (the same as those of the samples of RBPs and mRBPs considered) using eq. (1). The mean, standard deviation (std), maximum (max), and minimum (min) values are listed.

Table S7. Summary statistics for the log-odds ratios relative to the human proteome of being in a disordered region as predicted by the VSL2 algorithm for randomly sampled subgroups of the human proteome

	Random sample size $=1542$			Random sample size $=689$				
	mean	std	\max	min	mean	std	max	min
A	0.00	0.02	0.06	-0.07	0.00	0.03	0.11	-0.09
C	0.00	0.04	0.14	-0.13	0.00	0.06	0.14	-0.21
D	0.00	0.02	0.07	-0.05	0.00	0.03	0.12	-0.10
E	0.00	0.01	0.05	-0.05	0.00	0.02	0.07	-0.08
F	0.00	0.03	0.10	-0.11	0.00	0.05	0.15	-0.14
G	0.00	0.02	0.07	-0.07	0.00	0.03	0.12	-0.10
H	0.00	0.02	0.08	-0.07	0.00	0.04	0.12	-0.11
I	0.00	0.03	0.10	-0.13	0.00	0.05	0.16	-0.16
K	0.00	0.02	0.05	-0.05	0.00	0.03	0.10	-0.07
L	0.00	0.03	0.09	-0.08	0.00	0.04	0.15	-0.12
M	0.00	0.02	0.07	-0.07	0.00	0.03	0.11	-0.10
N	0.00	0.02	0.06	-0.08	0.00	0.03	0.10	-0.11
P	0.00	0.02	0.05	-0.05	0.00	0.02	0.09	-0.08
Q	0.00	0.02	0.07	-0.07	0.00	0.03	0.10	-0.09
R	0.00	0.02	0.07	-0.05	0.00	0.03	0.08	-0.10
S	0.00	0.02	0.05	-0.05	0.00	0.03	0.09	-0.08
T	0.00	0.03	0.11	-0.09	0.00	0.05	0.18	-0.14
V	0.00	0.03	0.10	-0.10	0.00	0.05	0.18	-0.13
W	0.00	0.04	0.12	-0.12	0.00	0.06	0.17	-0.16
Y	0.00	0.03	0.12	-0.10	0.00	0.05	0.15	-0.16

The values are derived from 1000 randomly selected subgroups of the human proteome with sample sizes of 1542 or 689 (the same as those of the samples of RBPs and mRBPs considered) using eq. (1). The mean, standard deviation (std), maximum (max), and minimum (min) values are listed.

Table 8. Orthologs used in the analysis of Figure 2.

OMA Protein ID	Species	OMA cross reference	Index ${ }^{1}$
TDP-43			
BRAFL24270	Branchiostoma floridae	C3ZIE9	1
CIOSA12468	Ciona savignyi	H2ZBU8	1
LATCH14939	Latimeria chalumnae	H3BC22	2
LEPOC09981	Lepisosteus oculatus	W5MHW9	2
ANGAN38603	Anguilla anguilla	XP 035237286	2
DANRE36783	Danio rerio	A0A2R8Q8T5	2
ESOLU39540	Esox lucius	ENSELUG00000009090.1	2
SALSA63007	Salmo salar	C0H962	2
ORYLA13842	Oryzias latipes	ENSORLG00000003593	2
ORENI03731	Oreochromis niloticus	ENSONIG00000004027	2
TAKRU15372	Takifugu rubripes	ENSTRUG00000012063	2
NEOBR03357	Neolamprologus brichardi	A0A3Q4HV10	2
AMPCI13505	Amphilophus citrinellus	A0A3Q0RHE0	2
MOLML02764	Mola mola	A0A3Q4B8R2	2
NOTFU16587	Nothobranchius furzeri	XP 015814443	2
HIPCM06019	Hippocampus comes	A0A3Q2YIA0	2
AMPPE26829	Amphiprion percula	A0A3P8RUU9	2
XENLA32018	Xenopus laevis	A0A1L8FFB1	3
XENTR12916	Xenopus tropicalis	TADBP XENTR	3
CHRPI32751	Chrysemys picta bellii	ENSCPBG00000022012.1	3
SPHPU16313	Sphenodon punctatus	ENSSPUG00000006688.1	3
ANAPL05491	Anas platyrhynchos	ENSAPLG00000006001	3
ANAPP02225	Anas platyrhynchos platyrhynchos	U3IED4	3
CHICK10318	Gallus gallus	F1NBY1	3
MELGA07585	Meleagris gallopavo	G1MZJ1	3
SERCA17445	Serinus canaria	ENSSCAG00000016954.1	3
PARMJ11107	Parus major	ENSPMJG00000014837.1	3
MELUD13787	Melopsittacus undulatus	ENSMUNG00000016204.1	3
PELSI14462	Pelodiscus sinensis	K7FJ67	3
JUNHY18871	Junco hyemalis	ENSJHYG00000010677.1	3
TAEGU06701	Taeniopygia guttata	H0YYI1	3
FICAL11802	Ficedula albicollis	U3JXL3	3
CHEAB01735	Chelonoidis abingdonii	ENSCABG00000017429.1	3
ORNAN13991	Ornithorhynchus anatinus	F7EDX1	4
SARHA02491	Sarcophilus harrisii	G3WM39	4
DASNO07425	Dasypus novemcinctus	ENSDNOG00000008531	4
ERIEU01545	Erinaceus europaeus	ENSEEUG00000003755	4
CALJA18973	Callithrix jacchus	F7CL81	4
CERAT28967	Cercocebus atys	A0A2K5LQ78	4
MACFA23554	Macaca fascicularis	A0A2K5WEW9	4
MACMU00269	Macaca mulatta	ENSMMUG00000007456	4
MACNE36802	Macaca nemestrina	A0A2K6BKI8	4
PAPAN00174	Papio anubis	A0A096NBQ0	4
MANLE13078	Mandrillus leucophaeus	A0A2K6A5S4	4
PANPA00278	Pan paniscus	A0A2R9C1F8	4
HUMAN47411	Homo sapiens	TADBP HUMAN	4
CANLF07184	Canis lupus familiaris	ENSCAFG00000016759	4
VULVU24847	Vulpes vulpes	ENSVVUG00000027110.1	4
URSAM28564	Ursus americanus	A0A452R9Z0	4
AILME09206	Ailuropoda melanoleuca	D2HKA5	4
FELCA08644	Felis catus	A0A2I2U8C8	4
TURTR12812	Tursiops truncatus	ENSTTRG00000001312	4
LOXAF11400	Loxodonta africana	G3TD75	4
HORSE08842	Equus caballus	F6WAU6	4
PROCA06978	Procavia capensis	ENSPCAG00000010442	4
PIGXX29002	Sus scrofa	I3LNA4	4
BOVIN08303	Bos taurus	G3MX91	4
CAPHI06804	Capra hircus	A0A452G5Y7	4
MANJA47321	Manis javanica	XP 036855904	4
OCHPR06808	Ochotona princeps	ENSOPRG00000006352	4
DIPOR02872	Dipodomys ordii	ENSDORG00000007465	4
CRIGR20744	Cricetulus griseus	ENSCGRG00000007923.1	4
MOUSE42872	Mus musculus	TADBP_MOUSE	4
CAVPO10357	Cavia porcellus	A0A286XX33	4
HETGA00594	Heterocephalus glaber	G5C522	4
VICPA09903	Vicugna pacos	ENSVPAG00000009543	4
OTOGA09169	Otolemur garnettii	H0XFZ2	4
CHILA18976	Chinchilla lanigera	ENSCLAG00000014547.1	4
AOTNA20136	Aotus nancymaae	A0A2K5EQY0	4
TUPBE02937	Tupaia belangeri	ENSTBEG00000000263	4
CAVAP09087	Cavia aperea	ENSCAPG00000015189.1	4
PHACI11189	Phascolarctos cinereus	A0A6P5JEZ4	4
SAIBB26155	Saimiri boliviensis boliviensis	A0A2K6TZ91	4
ICTTR08691	Ictidomys tridecemlineatus	I3MBK5	4
JACJA09000	Jaculus jaculus	ENSJJAG00000014196.1	4
MYOLU14708	Myotis lucifugus	G1P208	4
CHLSB09400	Chlorocebus sabaeus	A0A0D9S8N2	4

RHIBE13964	Rhinopithecus bieti	A0A2K6LE20	4
RHIRO33581	Rhinopithecus roxellana	A0A2K6QV39	4
EQUAS11333	Equus asinus	ENSEASG00005019017.1	4
COLAP32291	Colobus angolensis palliatus	A0A2K5IA07	4
FUKDA15705	Fukomys damarensis	A0A091DKG3	4
NANGA15865	Nannospalax galili	ENSNGAG00000023416.1	4
CARSF02449	Carlito syrichta	A0A1U7SU45	4
FUS			
LEPOC18149	Lepisosteus oculatus	W5LVA3	2
ANGAN53300	Anguilla anguilla	XP 035254071	2
ANATE28040	Anabas testudineus	A0A3Q1JBK0	2
SERDU24279	Seriola dumerili	A0A3B4UPE4	2
SCOMX14580	Scophthalmus maximus	ENSSMAG00000011685.1	2
TETNG10220	Tetraodon nigroviridis	H3D156	2
NOTFU30467	Nothobranchius furzeri	A0A1A7ZC85	2
KRYMA15889	Kryptolebias marmoratus	A0A3Q2ZW58	2
ASTCA29489	Astatotilapia calliptera	A0A3P8QDK7	2
HAPBU09804	Haplochromis burtoni	A0A3Q2W7N5	2
NEOBR22012	Neolamprologus brichardi	A0A3Q4H4B7	2
AMPOC31093	Amphiprion ocellaris	A0A3Q1B6C3	2
AMPPE11049	Amphiprion percula	A0A3P8SA41	2
ESOLU17742	Esox lucius	A0A3P8Z6T5	2
SALSA21612	Salmo salar	A0A1S3R6J7	2
ASTMX07328	Astyanax mexicanus	W5KQF2	2
PYGNA09213	Pygocentrus nattereri	A0A3B4E8M4	2
ICTPU24291	Ictalurus punctatus	ENSIPUG00000007342.1	2
DANRE29660	Danio rerio	F1R0M4	2
LATCH06576	Latimeria chalumnae	H3A671	2
ECHTE00861	Echinops telfairi	ENSETEG00000015358	2
PONAB04910	Pongo abelii	H2NQS4	2
CHRPI29771	Chrysemys picta bellii	ENSCPBG00000008979.1	3
CHEAB27054	Chelonoidis abingdonii	ENSCABG00000010374.1	3
SPHPU24372	Sphenodon punctatus	ENSSPUG00000002998.1	3
ANOCA17128	Anolis carolinensis	ENSACAG00000006776	3
XENTR14904	Xenopus tropicalis	Q28EL3	3
LOXAF05575	Loxodonta africana	G3SNY8	4
RABIT15423	Oryctolagus cuniculus	ENSOCUG00000021526.2	4
DIPOR01258	Dipodomys ordii	ENSDORG00000014218	4
FUKDA20682	Fukomys damarensis	ENSFDAG00000007552.1	4
HETGA21202	Heterocephalus glaber	ENSHGLG00100006254.1	4
CHILA19792	Chinchilla lanigera	ENSCLAG00000010457.1	4
OCTDE00228	Octodon degus	A0A6P3EP53	4
JACJA23117	Jaculus jaculus	ENSJJAG00000011802.1	4
CRIGR21309	Cricetulus griseus	ENSCGRG00000012106.1	4
MOUSE56790	Mus musculus	FUS MOUSE	4
RATNO02010	Rattus norvegicus	Q5PQK2	4
NANGA16163	Nannospalax galili	ENSNGAG00000023361.1	4
ICTTR12793	Ictidomys tridecemlineatus	ENSSTOG00000005943	4
CERAT36652	Cercocebus atys	A0A2K5M862	4
CHLSB14622	Chlorocebus sabaeus	A0A0D9R082	4
MACFA24759	Macaca fascicularis	A0A2K5UY14	4
MACMU14458	Macaca mulatta	ENSMMUG00000019637	4
MACNE37188	Macaca nemestrina	A0A2K6B648	4
MANLE13941	Mandrillus leucophaeus	A0A2K5ZIM2	4
PAPAN11413	Papio anubis	A0A096NHY1	4
COLAP30700	Colobus angolensis palliatus	A0A2K5K1V9	4
RHIBE34040	Rhinopithecus bieti	A0A2K6MN44	4
RHIRO31968	Rhinopithecus roxellana	A0A2K6PBV8	4
GORGO07778	Gorilla gorilla gorilla	ENSGGOG00000003707	4
HUMAN27992	Homo sapiens	FUS_HUMAN	4
PANPA15069	Pan paniscus	A0A2R9A818	4
PANTR12223	Pan troglodytes	H2RA80	4
NOMLE17198	Nomascus leucogenys	ENSNLEG00000016218	4
AOTNA37715	Aotus nancymaae	A0A2K5CEH5	4
CALJA04844	Callithrix jacchus	ENSCJAG00000003169	4
SAIBB16827	Saimiri boliviensis boliviensis	A0A2K6UY94	4
CARSF03981	Carlito syrichta	ENSTSYG00000011757	4
PROCO05597	Propithecus coquereli	A0A2K6G321	4
BOVIN20650	Bos taurus	A0A140T861	4
CAPHI17070	Capra hircus	A0A452DQG8	4
PIGXX20573	Sus scrofa	ENSSSCG00000030798.2	4
VICPA09706	Vicugna pacos	ENSVPAG00000004211	4
CANLF16361	Canis lupus familiaris	ENSCAFG00000016862	4
VULVU24268	Vulpes vulpes	ENSVVUG00000027797.1	4
MUSPF04187	Mustela putorius furo	M3YJ27	4
AILME07018	Ailuropoda melanoleuca	G1LKT4	4
URSAM07884	Ursus americanus	A0A452QX30	4
FELCA17000	Felis catus	ENSFCAG00000027928	4
PTEVA04324	Pteropus vampyrus	ENSPVAG00000003097	4
MYOLU16715	Myotis lucifugus	G1P397	4
ERIEU03865	Erinaceus europaeus	ENSEEUG00000004934	4

EQUAS04518	Equus asinus	ENSEASG00005011180.1	4
MANJA23313	Manis javanica	XP 017521732	4
DASNO08858	Dasypus novemcinctus	ENSDNOG00000017091	4
CHOHO04231	Choloepus hoffmanni	ENSCHOG00000010780	4
SARHA12777	Sarcophilus harrisii	G3WEM9	4
MONDO11342	Monodelphis domestica	ENSMODG00000001889	4
MACEU03227	Macropus eugenii	ENSMEUG00000000968	4
PHACI08601	Phascolarctos cinereus	ENSPCIG00000015897.1	4
Nup153			
XENTR02157	Xenopus tropicalis	ENSXETG00000014197	1
CIOIN15442	Ciona intestinalis	F6ZT40	1
LEPOC02490	Lepisosteus oculatus	W5MNS7	2
ANGAN03227	Anguilla anguilla	XP 035291407	2
ANATE05308	Anabas testudineus	A0A3Q1JXD7	2
SERDU08610	Seriola dumerili	A0A3B4U9G7	2
CYNSE14136	Cynoglossus semilaevis	A0A3P8WRB1	2
SCOMX19706	Scophthalmus maximus	ENSSMAG00000008418.1	2
GASAC05602	Gasterosteus aculeatus	G3NP66	2
MOLML09099	Mola mola	A0A3Q3X2J2	2
TAKRU10012	Takifugu rubripes	ENSTRUG00000010163	2
TETNG09217	Tetraodon nigroviridis	H3CUV8	2
ORYLA02168	Oryzias latipes	ENSORLG00000012674	2
ORYME27144	Oryzias melastigma	A0A3B3BZH3	2
NOTFU28633	Nothobranchius furzeri	XP 015829300	2
KRYMA01537	Kryptolebias marmoratus	A0A3Q3F4A6	2
CYPVA16762	Cyprinodon variegatus	A0A3Q2EGJ3	2
POEFO03854	Poecilia formosa	A0A087Y5I5	2
POERE03600	Poecilia reticulata	A0A3P9NMY4	2
XIPMA17891	Xiphophorus maculatus	ENSXMAG00000003437	2
ASTCA22790	Astatotilapia calliptera	A0A3P8Q5S6	2
HAPBU04455	Haplochromis burtoni	A0A3Q2V3R9	2
NEOBR07702	Neolamprologus brichardi	A0A3Q4H186	2
ORENI21884	Oreochromis niloticus	I3J2S0	2
AMPCI22627	Amphilophus citrinellus	A0A3Q0RT68	2
AMPOC02144	Amphiprion ocellaris	A0A3Q1ASF8	2
AMPPE25635	Amphiprion percula	A0A3P8SWR4	2
HIPCM26771	Hippocampus comes	A0A3Q2YQJ3	2
GADMO09197	Gadus morhua	ENSGMOG00000010422	2
ESOLU15511	Esox lucius	A0A3P9AD61	2
ASTMX04317	Astyanax mexicanus	ENSAMXG00000021025	2
PYGNA00871	Pygocentrus nattereri	A0A3B4D0Y3	2
ICTPU18872	Ictalurus punctatus	A0A2D0PV24	2
DANRE15074	Danio rerio	A0A0R4IVZ0	2
LATCH05943	Latimeria chalumnae	H3ACD6	2
OCHPR04515	Ochotona princeps	ENSOPRG00000006221	3
COLAP01419	Colobus angolensis palliatus	A0A2K5IW93	3
CARSF08065	Carlito syrichta	ENSTSYG00000001251	3
URSMA09101	Ursus maritimus	A0A452USF3	3
ERIEU07856	Erinaceus europaeus	ENSEEUG00000010183	3
MELGA08705	Meleagris gallopavo	G1MW17	3
CHICK14841	Gallus gallus	A0A1D5PXQ1	3
FICAL02256	Ficedula albicollis	U3KG17	3
PARMJ14580	Parus major	ENSPMJG00000018241.1	3
JUNHY01031	Junco hyemalis	ENSJHYG00000015545.1	3
TAEGU05586	Taeniopygia guttata	ENSTGUG00000005917	3
SERCA00052	Serinus canaria	ENSSCAG00000000585.1	3
MELUD05600	Melopsittacus undulatus	ENSMUNG00000009250.1	3
CHRPI05922	Chrysemys picta bellii	ENSCPBG00000008333.1	3
CHEAB03264	Chelonoidis abingdonii	ENSCABG00000005639.1	3
PELSI16509	Pelodiscus sinensis	K7GGR9	3
SPHPU04687	Sphenodon punctatus	ENSSPUG00000016687.1	3
ANOCA05697	Anolis carolinensis	G1KCK7	3
ORNAN12721	Ornithorhynchus anatinus	ENSOANG00000011858	4
LOXAF08097	Loxodonta africana	G3TFY7	4
RABIT14444	Oryctolagus cuniculus	G1SIZ4	4
DIPOR15101	Dipodomys ordii	ENSDORG00000001736	4
HETGA17013	Heterocephalus glaber	ENSHGLG00100001529.1	4
CAVPO07965	Cavia porcellus	ENSCPOG00000004007	4
CHILA18633	Chinchilla lanigera	ENSCLAG00000001915.1	4
OCTDE06300	Octodon degus	ENSODEG00000005620.1	4
JACJA19740	Jaculus jaculus	ENSJJAG00000016760.1	4
CRIGR01418	Cricetulus griseus	ENSCGRG00000009244.1	4
MOUSE10788	Mus musculus	E9Q3G8	4
RATNO08849	Rattus norvegicus	G3V662	4
NANGA14919	Nannospalax galili	ENSNGAG00000013817.1	4
ICTTR03195	Ictidomys tridecemlineatus	ENSSTOG00000005807	4
CERAT09565	Cercocebus atys	A0A2K5NJ22	4
CHLSB06650	Chlorocebus sabaeus	A0A0D9R5K0	4
MACFA33008	Macaca fascicularis	A0A2K5TL19	4
MACMU16280	Macaca mulatta	ENSMMUG00000001993	4
MACNE10264	Macaca nemestrina	A0A2K6CZZ2	4

MANLE36126	Mandrillus leucophaeus	A0A2K5YCI0	4
RHIBE28287	Rhinopithecus bieti	A0A2K6MPT9	4
RHIRO11751	Rhinopithecus roxellana	A0A2K6P3I1	4
GORGO17159	Gorilla gorilla gorilla	ENSGGOG00000014261	4
HUMAN83246	Homo sapiens	NU153 HUMAN	4
PANPA33599	Pan paniscus	A0A2R9A8E2	4
PANTR37299	Pan troglodytes	A0A2I3SL61	4
PONAB13047	Pongo abelii	H2PI06	4
NOMLE06341	Nomascus leucogenys	G1QKG7	4
AOTNA16236	Aotus nancymaae	A0A2K5BV75	4
CALJA14506	Callithrix jacchus	F7EHG8	4
SAIBB12360	Saimiri boliviensis boliviensis	A0A2K6T874	4
MICMU04339	Microcebus murinus	ENSMICG00000006089	4
PROCO19645	Propithecus coquereli	A0A2K6EY30	4
OTOGA13338	Otolemur garnettii	H0XC65	4
BOVIN19169	Bos taurus	A0A3Q1MAS6	4
CAPHI15081	Capra hircus	A0A452FV25	4
SHEEP10664	Ovis aries	W5PPG7	4
PIGXX30834	Sus scrofa	A0A480MLT8	4
VICPA01837	Vicugna pacos	ENSVPAG00000002072	4
CANLF13754	Canis lupus familiaris	ENSCAFG00000010146	4
VULVU13037	Vulpes vulpes	A0A3Q7S734	4
MUSPF09744	Mustela putorius furo	ENSMPUG000000005159	4
AILME04788	Ailuropoda melanoleuca	G1L1N5	4
FELCA05138	Felis catus	ENSFCAG00000011583	4
PTEVA10137	Pteropus vampyrus	ENSPVAG00000012632	4
MYOLU06869	Myotis lucifugus	G1P376	4
SORAR06050	Sorex araneus	ENSSARG00000013269	4
EQUAS08047	Equus asinus	ENSEASG00005009945.1	4
HORSE09415	Equus caballus	ENSECAG00000016010	4
MANJA39534	Manis javanica	XP 036850301	4
DASNO13918	Dasypus novemcinctus	ENSDNOG00000001153	4
MONDO04745	Monodelphis domestica	ENSMODG00000010951	4
PHACI10774	Phascolarctos cinereus	ENSPCIG00000029680.1	
			4

ANATE29102	Anabas testudineus	A0A3Q1HCA4	2
SERDU24303	Seriola dumerili	A0A3B4UQH3	2
CYNSE12687	Cynoglossus semilaevis	A0A3P8WUF2	2
SCOMX13694	Scophthalmus maximus	ENSSMAG00000008293.1	2
GASAC08536	Gasterosteus aculeatus	G3PMS9	2
MOLML21320	Mola mola	A0A3Q3WUT0	2
TAKRU11363	Takifugu rubripes	ENSTRUG00000009839	2
ORYLA16918	Oryzias latipes	ENSORLG00000012798	2
ORYME17187	Oryzias melastigma	A0A3B3CNE4	2
NOTFU05655	Nothobranchius furzeri	A0A1A8A0C2	2
KRYMA10889	Kryptolebias marmoratus	A0A3Q3B4A0	2
CYPVA18089	Cyprinodon variegatus	A0A3Q2DHY7	2
POEFO13649	Poecilia formosa	A0A087XTC6	2
POERE31547	Poecilia reticulata	A0A3P9Q3C9	2
XIPMA10115	Xiphophorus maculatus	ENSXMAG00000001697	2
ASTCA30898	Astatotilapia calliptera	A0A3P8PDD9	2
HAPBU25992	Haplochromis burtoni	A0A3Q2WY78	2
ORENI21771	Oreochromis niloticus	I3KF62	2
AMPCI16532	Amphilophus citrinellus	A0A3Q0SBA3	2
AMPOC21905	Amphiprion ocellaris	A0A3Q1DGT8	2
AMPPE09980	Amphiprion percula	A0A3P8T1Z7	2
HIPCM18813	Hippocampus comes	A0A3Q2Z453	2
ESOLU15775	Esox lucius	ENSELUG00000013855.1	2
ASTMX21398	Astyanax mexicanus	ENSAMXG00000019919	2
PYGNA21286	Pygocentrus nattereri	A0A3B4DXJ0	2
ICTPU25584	Ictalurus punctatus	ENSIPUG00000001602.1	2
DANRE29842	Danio rerio	A0A0R4IJ26	2
LATCH11830	Latimeria chalumnae	H3ABQ4	2
PROCA10536	Procavia capensis	ENSPCAG00000008260	2
OCHPR12848	Ochotona princeps	ENSOPRG00000005819	2
DIPOR07487	Dipodomys ordii	ENSDORG00000014734	2
ICTTR12692	Ictidomys tridecemlineatus	ENSSTOG00000023394	2
CARSF10784	Carlito syrichta	ENSTSYG00000012711	2
MICMU06378	Microcebus murinus	ENSMICG00000001883	2
CHOHO09049	Choloepus hoffmanni	ENSCHOG00000009374	2
MELGA04507	Meleagris gallopavo	G1N3Z6	2
PELSI06952	Pelodiscus sinensis	ENSPSIG00000003965	2
PAPAN11340	Papio anubis	ENSPANG00000018523	3
MUSPF02299	Mustela putorius furo	M3YLM1	3
SARHA15034	Sarcophilus harrisii	G3W445	3
MONDO11658	Monodelphis domestica	ENSMODG00000016348	3
ANAPL06809	Anas platyrhynchos	ENSAPLG00000009978	3
ANAPP26723	Anas platyrhynchos platyrhynchos	A0A493TP73	3
CHICK02910	Gallus gallus	F1NAU7	3
FICAL04956	Ficedula albicollis	U3JMB2	3
PARMJ04275	Parus major	ENSPMJG00000019495.1	3

JUNHY15710	Junco hyemalis	ENSJHYG00000002230.1	3
TAEGU02638	Taeniopygia guttata	ENSTGUG00000006142	3
SERCA11590	Serinus canaria	ENSSCAG00000003490.1	3
MELUD20429	Melopsittacus undulatus	ENSMUNG00000002613.1	3
CHRPI01613	Chrysemys picta bellii	ENSCPBG00000001881.1	3
CHEAB20009	Chelonoidis abingdonii	ENSCABG00000016518.1	3
SPHPU07887	Sphenodon punctatus	ENSSPUG00000010525.1	3
ANOCA11291	Anolis carolinensis	ENSACAG00000011857	3
XENTR01823	Xenopus tropicalis	ENSXETG00000030437	3
ORNAN00398	Ornithorhynchus anatinus	ENSOANG00000007672	4
LOXAF05468	Loxodonta africana	G3STU5	4
ECHTE12195	Echinops telfairi	ENSETEG00000014658	4
RABIT11241	Oryctolagus cuniculus	ENSOCUG00000004325.3	4
HETGA19908	Heterocephalus glaber	ENSHGLG00100012496.1	4
CHILA19632	Chinchilla lanigera	ENSCLAG00000010217.1	4
OCTDE00070	Octodon degus	ENSODEG00000012802.1	4
CRIGR22441	Cricetulus griseus	ENSCGRG00000013351.1	4
MOUSE56368	Mus musculus	TNR6A MOUSE	4
RATNO01902	Rattus norvegicus	A0A0G2JZJ3	4
NANGA18433	Nannospalax galili	ENSNGAG00000020702.1	4
CERAT31849	Cercocebus atys	A0A2K5L032	4
CHLSB14521	Chlorocebus sabaeus	A0A0D9R2K7	4
MACFA24538	Macaca fascicularis	A0A2K5WC69	4
MACMU14332	Macaca mulatta	ENSMMUG00000020428	4
MACNE37716	Macaca nemestrina	A0A2K6CFH5	4
MANLE09220	Mandrillus leucophaeus	A0A2K6AAZ0	4
COLAP38355	Colobus angolensis palliatus	A0A2K5K3P5	4
RHIBE00537	Rhinopithecus bieti	A0A2K6JVI4	4
GORGO07659	Gorilla gorilla gorilla	ENSGGOG00000005137	4
HUMAN27314	Homo sapiens	TNR6A HUMAN	4
PANPA14856	Pan paniscus	A0A2R9A4V3	4
PANTR11987	Pan troglodytes	H2R4F2	4
PONAB04808	Pongo abelii	H2NQF8	4
NOMLE05264	Nomascus leucogenys	ENSNLEG00000011851	4
AOTNA13844	Aotus nancymaae	A0A2K5D1C1	4
CALJA04720	Callithrix jacchus	ENSCJAG00000020677	4
SAIBB17092	Saimiri boliviensis boliviensis	A0A2K6V8D8	4
PROCO17866	Propithecus coquereli	A0A2K6ENQ1	4
OTOGA06942	Otolemur garnettii	H0WUN8	4
TUPBE12837	Tupaia belangeri	ENSTBEG00000014965	4
BOVIN20475	Bos taurus	G3N258	4
CAPHI16912	Capra hircus	A0A452F9V6	4
SHEEP12355	Ovis aries	W5Q977	4
PIGXX38979	Sus scrofa	A0A287BNE0	4
CANLF16466	Canis lupus familiaris	ENSCAFG00000017531	4
VULVU34014	Vulpes vulpes	ENSVVUG00000005380.1	4
AILME02472	Ailuropoda melanoleuca	G1LRX8	4
URSAM01166	Ursus americanus	A0A452QQI8	4
URSMA28208	Ursus maritimus	A0A452TSR0	4
PTEVA04038	Pteropus vampyrus	ENSPVAG00000012066	4
MYOLU03029	Myotis lucifugus	G1NYH2	4
ERIEU09113	Erinaceus europaeus	ENSEEUG00000004530	4
EQUAS29758	Equus asinus	ENSEASG00005017693.1	4
HORSE04775	Equus caballus	ENSECAG00000025056	4
MANJA36779	Manis javanica	XP 036847877	4
DASNO11072	Dasypus novemcinctus	ENSDNOG00000013989	4
PHACI20675	Phascolarctos cinereus	ENSPCIG00000012106.1	4

${ }^{1}$ The taxonomic rank. 1: (Cordata; 2: (Vertebrata; 3: (Tetrapoda; 4: (Mammalia)))).

References

1. Romero, Obradovic \& Dunker, K. Sequence Data Analysis for Long Disordered Regions Prediction in the Calcineurin Family. Genome Inform Ser Workshop Genome Inform 8, 110-124 (1997).
2. Radivojac, P., Obradovic, Z., Brown, C.J. \& Dunker, A.K. Prediction of boundaries between intrinsically ordered and disordered protein regions. Pac Symp Biocomput, 216-27 (2003).
3. Hu, G. et al. fIDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions. Nat Commun 12, 4438 (2021).
4. Gerstberger, S., Hafner, M. \& Tuschl, T. A census of human RNA-binding proteins. Nat Rev Genet 15, 829-45 (2014).
5. Zhao, B. et al. Intrinsic Disorder in Human RNA-Binding Proteins. J Mol Biol 433, 167229 (2021).
6. Altenhoff, A.M. et al. OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Res 49, D373-D379 (2021).
7. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539 (2011).
8. Cock, P.J. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422-3 (2009).
9. Capra, J.A. \& Singh, M. Predicting functionally important residues from sequence conservation. Bioinformatics 23, 1875-82 (2007).
10. Necci, M., Piovesan, D., Predictors, C., DisProt, C. \& Tosatto, S.C.E. Critical assessment of protein intrinsic disorder prediction. Nat Methods 18, 472-481 (2021).

[^0]: Short statements for broader audience: Aromatic residues appear frequently in the core of folded proteins and are relatively rare in the intrinsically disordered regions (IDRs). However, many IDRs that mediate liquid-liquid phase separation (LLPS) have aromatic residues that are important for their functional assembly. Focusing on RNAbinding proteins (many undergo LLPS), we show that aromatic residues have contributed twice to evolution: first, in stabilizing structured protein, and later, in facilitating LLPS in IDRs.

