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Abstract

Conserved residues in protein homolog sequence alignments are structurally

or functionally important. For intrinsically disordered proteins or proteins

with intrinsically disordered regions (IDRs), however, alignment often fails

because they lack a steric structure to constrain evolution. Although sequences

vary, the physicochemical features of IDRs may be preserved in maintaining

function. Therefore, a method to retrieve common IDR features may help iden-

tify functionally important residues. We applied unsupervised contrastive

learning to train a model with self-attention neuronal networks on human

IDR orthologs. Parameters in the model were trained to match sequences in

ortholog pairs but not in other IDRs. The trained model successfully identifies

previously reported critical residues from experimental studies, especially

those with an overall pattern (e.g., multiple aromatic residues or charged

blocks) rather than short motifs. This predictive model can be used to identify

potentially important residues in other proteins, improving our understanding

of their functions. The trained model can be run directly from the Jupyter

Notebook in the GitHub repository using Binder (mybinder.org). The only

required input is the primary sequence. The training scripts are available on

GitHub (https://github.com/allmwh/IFF). The training datasets have been

deposited in an Open Science Framework repository (https://osf.io/jk29b).
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1 | INTRODUCTION

The evolutionary history of DNA/RNA sequences and the
proteins they encode can be revealed through multiple
sequence alignment methods, enabling the identification
of phylogenetic relationships. These methods have been
used to identify our extinct Neanderthal and Denisovan
cousins through DNA extracted from ancient bones
(Green et al., 2010; Meyer et al., 2012), to discover the
Archaea domain through prokaryotic ribosomal 16S RNA
sequences (Woese and Fox, 1977), and to trace myoglobin

and hemoglobin protein sequences back to their globin
origins (Hardison, 2012; Suzuki and Imai, 1998). Protein
structures also provide insights into protein evolution, as
they can be conserved despite changes in the primary
sequence. For example, the structural similarity between
the motor domains of kinesin and myosin suggests that
they have a common ancestor despite low sequence iden-
tity (Kull et al., 1996). The shape of a protein also influ-
ences its evolution and the conservation of functionally
important residues. When conservation levels are mapped
onto 3D structures, the most conserved residues are often
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found in key locations such as the folding core (Echave
et al., 2016) or catalytic sites (Craik et al., 1987).

However, intrinsically disordered proteins (IDPs) or
proteins with intrinsically disordered regions (IDRs),
which are estimated to comprise approximately half of the
eukaryotic proteome (Dunker et al., 2000), do not adhere
to the structural constraints in evolution. As a result, the
sequences of IDPs or IDRs exhibit a broader range of vari-
ation compared to their folded counterparts. This phenom-
enon is exemplified by the example provided in Figure S1.
Although some structural evolutionary restraints still
apply to some IDRs, especially those that undergo folding-
upon-binding (Jemth et al., 2018; Karlsson et al., 2022),
the evolution of IDRs is mainly constrained by function.
One recently recognized function of IDRs is their ability to
undergo liquid–liquid phase separation (LLPS) (Alberti
et al., 2019; Alberti and Hyman, 2021). This mechanism
contributes to the formation of membraneless organelles
and explains the spatiotemporal control of many biochem-
ical reactions within a cell (Banani et al., 2017; Shin and
Brangwynne, 2017). The proteins within these condensates
do not adopt specific conformations (i.e., they still behave
like random coils) (Brady et al., 2017; Burke et al., 2015)
and thus evolve without structural restraints. Although
multiple sequence alignment may work in some instances
(e.g., the aromatic residues in the IDRs of TDP-43 and
FUS are conserved, highlighting their potential impor-
tance for LLPS [Ho and Huang, 2022]), most IDRs cannot
be aligned, especially when there are sequence gaps
between orthologs (Light et al., 2013).

The functionally important physicochemical properties
of IDPs/IDRs encoded in their primary sequence may be
retained during evolution. Aromatic residue patterns
(Martin et al., 2020), prion-like amino-acids (Patel
et al., 2015), charged-residues blocks (Greig et al., 2020), and
coiled-coil content (Fang et al., 2019) all contribute to LLPS,
but these features cannot be revealed by sequence align-
ment. Multiple sequence alignment methods are, therefore,
of limited use in identifying critical residues in IDRs. To
overcome this challenge, we propose an unsupervised con-
trastive machine learning model trained using self-attention
neuronal networks on human IDR orthologs. Our results
show that the trained model “pays attention” to crucial resi-
dues or features within IDRs. We also provide online access
to our model that uses primary sequences as input.

2 | METHODS

2.1 | Training dataset preprocessing

Human protein sequences were retrieved from UniProt
(UniProt, 2019) and the corresponding orthologs were

obtained from the Orthologous Matrix (OMA) database
(Altenhoff et al., 2021). Chordate orthologs were aligned
using Clustal Omega (Sievers et al., 2011). The PONDR
(Romero et al., 1997) VSL2 algorithm was used to predict
the IDR of the human proteins and to define the bound-
aries of the aligned sequences (Figure 1a). Aligned
regions were defined as subgroups. N-terminal methio-
nines were removed to assist learning (methionine is
coded by the start codon in protein synthesis). After
removing gaps within the aligned sequences, all
sequences were padded to a length of 512 amino acids
(repeating from the N-terminus; Figure 1a). The few
sequences longer than 512 amino acids (56,086 out of
2,402,346, 2.3%) were truncated from the C-terminus. To
pad or to truncate the sequence to 512 is for unifying the
dimension of our training dataset, keeping the consis-
tency of the model input size. The repeated sequences
preserve the relative ordering of the original sequence.
This can be beneficial for tasks where the order is impor-
tant in sequence classification. The training dataset thus
consisted of 28,955 ortholog subgroups from 13,476
human protein families with IDRs longer than 40 amino
acids.

Each training batch consisted of 50 randomly selected
subgroups (Figure 1b). The human sequence from each
subgroup was paired with one of its orthologs (one of the
nonhuman sequences in the same subgroup, Figure 1c).
The selection probability was weighted by the Levensh-
tein distance (Levenshtein, 1966) from the human
sequence to favor low similarity pairings. Figure S2
shows how different the sequences typically were in these
ortholog subgroups, along with the corresponding selec-
tion probabilities. The most dissimilar sequences (high
probability of being selected for training) in each ortholog
group were also deposited in Open Science Framework.
A classifier token (CLS) was added to the start of the
selected sequences, and these were mapped to a matrix
with an embedding dimension of 128 (embed_dim;
Figure 1c). Each residue in the protein sequence was
embedded in a numerical vector, as another dimension
alongside the padding (512). We have tested different
embedding sizes from 16, 32, 64, and 128. The embedding
size of 128 is sufficient for converged training
performance.

2.2 | Training architecture

The training architecture was a self-supervised contras-
tive learning model, Momentum Contrast version
3 (MoCo v3) (Chen et al., 2021). In the computer vision
field, this model was designed to learn meaningful repre-
sentations from pictures without relying on explicit labels
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FIGURE 1 Flowchart of the training scheme. (a) Schematic representation of how the training datasets were constructed from human

sequences (orange lines) and orthologs (green lines). (b) A training batch made up of 50 randomly selected subgroups. (c) Embedding of the

human sequence and one of its orthologs from the same subgroup (selection probability weighted by dissimilarity) to different dimensions

(as a tensor for each sequence). (d) The architecture of the training model. The steps in panels (b)–(d) were repeated 580 times to cover all

subgroups in the training set, and the whole process (a training epoch) was repeated 400 times.
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or annotations. By applying this architecture to our task,
the model learned to distinguish between similar and dis-
similar protein sequences and capture their underlying
patterns and features. This approach allowed us to use
large amounts of unlabeled protein data to train our
model effectively. The base encoder in MoCo v3 was
replaced with a classical self-attention network (Vaswani
et al., 2017) for fitting our amino acid letters input. We
used eight-head attention and tested six attention layers.
The attention layers help our model to focus on different
parts of the protein sequence when making predictions
and allow the model to give more importance to specific
regions. Fifty human sequences from the same batch and
their corresponding orthologs (the ones with the lowest
similarity to each human sequence, as mentioned above)
were sent to the momentum encoders (fq, fk respectively,
following the original nomenclature (Chen et al., 2021)),
and calculated in parallel (Figure 1d). The outputs from
each human sequence and its ortholog were a query (q)
and key (k+; the positive sample for each query). The
output of the other 49 orthologs were the negative sam-
ples (k–). All 50 combinations of q, k+, and k– were for-
mulated to minimize a contrastive loss using the adopted
InfoNCE (van den Oord et al., 2018):

Lq ¼� log
exp q �kþ=τ� �

exp q �kþ=τ� �þP
k� exp q �k�=τð Þ , ð1Þ

where τ is a temperature hyper-parameter (set to 0.02).
The loss was computed in a symmetrized manner (Chen
et al., 2021), that is, the human sequences (q) were also
sent to fk, and the orthologs (k) were sent to the fq with
correspondent outputs for calculating the InfoNCE loss.
The parameters between the attention layers of fq (light
purple blocks in Figure 1d) were updated according to a
gradient to minimize the cross-entropy loss (Equation 1).
The parameters in fk (dark purple blocks) were updated
by the momentum encoder: (1 – m) • query_encoder
+ m • key_encoder, with m set to 0.999 by default (Chen
et al., 2021).

This scheme (Figure 1b–d) was repeated �580 times
to include all 28,955 subgroups in each training epoch.
The training consists of 400 epochs, and the InfoNCE loss
is sufficiently converged (Figure S3). After the training,
the attention scores for each residue in an input sequence
are predicted by the trained model. The attention score
represents the measure of importance or relevance
assigned to each amino acid position within a protein
sequence. It indicates how much attention or focus the
model attributes to that specific position when making
predictions. A higher attention score suggests that the
model considers that position to be more influential

within the protein. The attention score is a representation
of the model's internal weighting and should be inter-
preted in the context of its impact on the model's predic-
tions rather than directly linked to specific physical
properties of the amino acids.

The model was built on PyTorch and the training was
performed on a Nvidia Telsa P100 16G GPU.

3 | RESULTS

3.1 | The trained model attributes a high
attention score to experimentally
confirmed critical residues

Studies have shown that the aromatic residues (phenylal-
anine, tyrosine, and tryptophan) in the IDRs of TDP-43
(Li et al., 2018b), FUS (Lin et al., 2017a) and hnRNP-A1
(Molliex et al., 2015) are critical for LLPS-related func-
tions. These residues obtain a high attention score in our
model (Figure 2a). The aromatic residues (two trypto-
phans and 10 tyrosines) in galectin-3 (Lin et al., 2017b)
also score highly (Figure 2b, left panel). Interestingly,
although a zebrafish's galectin, which has an IDR, differs
substantially in primary sequence from human galectin-3
(Supplementary Figure S4), the aromatic residues (mostly
tryptophan instead of tyrosine) also have high attention
scores (Figure 2b, right panel). Note that this zebrafish's
galectin was not in the OMA ortholog database used for
training (OMA number: 854142). Charged residues (pur-
ple arrows in Figure 2c) reported to be associated with
condensation in NPM1 (Mitrea et al., 2018), FMRP
(Tsang et al., 2019), and Caprin1 (Wong et al., 2020) also
obtain high attention scores (Figure 2c). Our model
also assigns high attention scores to the methionines in
Pbp-1 (labeled in Figure 2d; Pbp-1 is the yeast ortholog of
human Ataxin-2), which have been shown to be critical
for redox-sensitive regulation (Kato et al., 2019). Alto-
gether, these results indicate that the trained model cor-
rectly identifies known key IDR residues.

3.2 | Most amino acids have broadly
distributed attention scores except
tryptophan and cysteine, whose presence
in IDRs hints at potential importance

Figure 2e compares the attention score distributions of
the amino acids in human IDRs. The differences are
striking, but the attention scores are not correlated with
other physical properties, such as disorder/order propen-
sity (Radivojac et al., 2007; Vihinen et al., 1994), prion-
likeness (Lancaster et al., 2014), or prevalence in human
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FIGURE 2 Results of the trained model for reference proteins and attention score distributions for individual amino acids. (a–d)
Sequences and attention scores for the intrinsically disordered regions of (a) the RNA-binding proteins TDP-43, FUS, and hnRNP-A1,

(b) human and zebrafish galectin-3, (c) NPM1, FMRP, and Caprin-1, and (d) Pbp-1. The attention scores appear as heatmaps from high (red)

to low (gray) in the top row of each protein along with residue numbers. Amino acids with different physical properties are shown on

separate rows as indicated in panel (a). Purple arrows indicate amino acids of known functional importance. (e) Half-violin plots of the

distribution of attention scores in human IDRs for each amino acid, sorted by median value from high (tryptophan, W) to low (alanine, A).

IDRs, intrinsically disordered regions.
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IDRs (Figure S5). The attention scores of alanine are
always low. Although poly-alanine promotes α-helix for-
mation (Polling et al., 2015), which is known to contrib-
ute to IDR functions (Chiu et al., 2022; Conicella
et al., 2020; Li et al., 2018a), our model ignores this
amino acid. This is probably because α-helices are also
promoted by other amino-acid types, such as leucine or
methionine (Levitt, 1978; Pace and Scholtz, 1998), in dif-
ferent combinations not involving alanine. The training
process did not include structure information, and thus
structure-related sequence motifs could not be learned by
our model. At the other end of the distribution, trypto-
phan and cysteine systematically obtain high attention
scores. These structure-promoting amino acids rarely
appear in unstructured regions (Radivojac et al., 2007;
Uversky and Dunker, 2010; Vihinen et al., 1994); there-
fore, their appearance in IDRs hints at their potential
importance. Although little is known about the role of
cysteine in IDRs, its involvement in tuning structural
flexibility and stability has been recently discussed
(Bhopatkar et al., 2020), and our results may have also
predicted its currently ignored importance in IDRs. Tryp-
tophan, in contrast, is well-known to act as LLPS-driving
“stickers” in IDRs (Li et al., 2018b; Sheu-Gruttadauria
and MacRae, 2018; Wang et al., 2018), and bioinformatic
analysis shows that they may have evolved in the IDRs of
specific proteins to assist LLPS (Ho and Huang, 2022).

The fact that most amino acids, including those
highlighted in Figure 2a–d, have broad attention score
distributions (Figure 2e), excludes the possibility that our
model is biased toward particular amino-acid types rather
than sequence content as a whole. Moreover, in the
machine learning procedure, the protein sequences were
embedded into higher dimension matrices (as sequences
of digits; Figure 1c), and amino-acid type information
was lost when the matrices were transformed into tensors
along with the self-attention layers (Figure 1d). These
results support the predictive ability of the trained model.

4 | DISCUSSION

Genetic information, in the form of a linear combination
of nucleic or amino acids, becomes more diverse over
time. Comparing levels of diversity between different spe-
cies reveals how closely related they are. In terms of
amino acids, multiple sequence alignment not only high-
lights phylogenetic relationships between proteins but
also facilitates homology modeling for structure predic-
tion (Balakrishnan et al., 2011; Morcos et al., 2011; Weigt
et al., 2009). Machine learning approaches have recently
been used to incorporate information from evolution to
train structure prediction models (AlQuraishi, 2019;

Xu, 2019), and the highly accurate predictions from
AlphaFold (Jumper et al., 2021) and RoseTTAFold (Baek
et al., 2021) have revolutionized structural biology. In
contrast, the structural conformations of IDRs lack a one-
to-one correspondence with the primary sequence, and
multiple sequence alignment often fails (Ho and
Huang, 2022; Lindorff-Larsen and Kragelund, 2021).
These limitations make IDR structural ensembles chal-
lenging to predict. A few attempts have been reported,
such as using generative autoencoders to learn from short
molecular dynamics simulations (Bhopatkar et al., 2020).
The potential and challenges of machine learning in IDR
ensemble prediction are also discussed (Lindorff-Larsen
and Kragelund, 2021).

Sequence pattern prediction faces similar challenges,
including the lack of a sufficient stock of “ground-truth”
training data for validating the model performance, such
as image databases or the Protein Data Bank. Neverthe-
less, unsupervised learning architectures have been
developed to train models without labeled datasets
(Hinton and Sejnowski, 1999), and this type of approach
is particularly well-suited for IDRs. For instance, Saar
et al. (2021) used a language-model-based classifier to
predict whether IDRs undergo LLPS. Moses and
coworkers pioneered the use of unsupervised contrastive
learning, using protein orthologs as augmentation (Lu
et al., 2020), to train their model to identify IDR charac-
teristics (Lu et al., 2022). While we also used ortholog
sequences as training data, our approach differs in sev-
eral key ways. We used self-attention networks, rather
than convolutional neural networks, to capture the distal
features in the entire protein sequence. Additionally, we
trained our model using the latest contrastive learning
architecture (MoCo v3), which greatly reduces memory
usage for larger batches and enhances efficiency. In con-
trast to other masked language models (Brandes
et al., 2022; Elnaggar et al., 2022; Rives et al., 2021), our
approach is the first, to the best of our knowledge, to
combine contrastive learning and self-attention in
extracting features using natural language processing for
protein sequence analysis. Furthermore, our trained
model directly “pays attention” to potentially critical resi-
dues in the entire sequence, rather than mapping the pri-
mary sequence to learned motifs (Lu et al., 2022).

Our research investigates the viability and potential
of using contrastive learning and self-attention networks
to identify features within proteins' IDRs. Our tool offers
a convenient resource for biochemists and cell biologists
to identify overall features in an IDR sequence, such as a
predominance of aromatic residues or blocks of charged
residues (Figure 2). Moreover, our model provides intui-
tive results highlighting potentially important residues
for researchers to target in mutagenesis or truncation
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experiments. Nevertheless, we are aware that the predic-
tive capacity of our approach could be enhanced through
the use of larger training datasets, including nonhuman
orthologues, or by using increased computational
resources, such as additional GPUs, to enable training
with larger batch sizes.

We have created online access to our model, IFF (IDP
Feature Finder), which only requires a primary sequence
or UniProt ID as input. We expect our program to be use-
ful in various research fields, notably cell biology, to effi-
ciently identify critical residues in proteins with IDRs,
such as those that undergo LLPS.
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